
Document name: CUMULUS Evaluation Report ɀ Project Results summarized for external Evaluators
Version: 1.0

Security: Public

Date 29/06/2015

Page 1/ 58

Project Acronym: CUMULUS
Project Title: Certification infrastrUcture for MUlti -Layer cloUd Services
Call identifier: FP7 -ICT-2011-8
Grant agreement no.: 318580
Starting date: 1 st October 2012
Ending date: 30th September 2015

CUMULUS Evaluation Report ɀ Project
Results summarized for external Evaluators

AUTHOR(S): Antonio Álvarez (ATOS), María Rosa Vieira (ATOS), George
Spanoudakis (CITY), Maria Krotsiani (CITY), Matthias Junk (IFX), Daniel

Schmölzer (IFX), Ernesto Damiani (UMIL), Gian Paolo Rossi (UMIL), Claudio
Ardagna (UMIL), Marco Anisetti (UMIL), Filippo Gaudenzi (UMIL), Francesco

Zavatarelli (UMIL), Mercedes Castaño (WT), Alicia Jiménez (WT), Vittorio Bagini
(FUB), Renato Menicocci (FUB), Alessandro Riccardi (FUB), Jesus Luna (CSA),

Antonio Maña (UMA), Hristo Koshutanski (UMA), Javier Gonzalez (UMA)

REVIEWERS(S): Matthias Junk (IFX), Daniel Schmölzer (IFX)

PROPRIETARY RIGHTS STATEMENT
This document contains information, which is proprietary to the CUMULUS consortium.
Neither this document nor the information contained herein shall be used, duplicated or

communicated by any means to any third party, in whole or in parts, except with prior written
consent of the CUMULUS consortium.

Document name: CUMULUS Evaluation Report ɀ Project Results summarized for external Evaluators
Version: 1.0

Security: Public

Date 29/06/2015

Page 2/ 58

Summary

EXECUTIVE SUMMARY ... 4

1. INTRODUCTION .. 5
1.1. Overview of CUMULUS .. 5
1.2. Structure of this report .. 6

2. CUMULUS INFRASTRUCTURE SECURITY ... 8

3. REPRESENTATIONAL EXPRESSIVENESS OF CUMULUS CERTIFICATION MODELS 13
3.1. Test Based Certification Models .. 13

3.1.1. Certification Model element ... 13
3.1.1. An Example of Test Based Certification Models ... 16

3.2. Monitoring Based Certification Models .. 19
3.2.1. Overview of MBCM specification schema... 19
3.2.2. Examples of Monitoring Based Certification Models .. 27

3.3. Trusted Computing Based Certification Models ... 29
3.4. Incremental & Multi-Layer Certification Models .. 31

3.4.1. Multi-Layer certification ... 31
3.4.2. An Example of Multi-Layer certification: Data Leakage prevention 32
3.4.3. Incremental certification... 33
3.4.4. Test-based Incremental certification .. 34

3.5. Hybrid Certification Models .. 37
3.5.1. Overview of hybrid certification models ... 37
3.5.2. Examples of hybrid certification models ... 38

4. ASSURANCE ... 40

5. CUMULUS-AWARE APPLICATION ENGINEERING ... 42

6. COSTS OF APPLYING THE CUMULUS APPROACH .. 44
6.1. Cost of certification model specification ... 44

6.1.1. Costs of test based certification model specification.. 44
6.1.2. Costs of monitoring based certification model specification .. 44
6.1.3. Costs of trusted computing based certification model specification 45

6.2. Cost of certification model execution ... 46
6.2.1. Test based certification model execution & performance evaluation 46
6.2.2. Monitoring based certification model execution & performance evaluation................... 47
6.2.3. Trusted computing based certification model execution & performance evaluation 49

7. BENEFITS AND RISKS OF CUMULUS APPROACH .. 51
7.1. Automation .. 51
7.2. Accountability .. 51
7.3. Business benefits ... 52

7.3.1. Cloud Certification Provider (CCP) .. 52
7.3.2. Cloud Auditor .. 53
7.3.3. Cloud Provider ... 53
7.3.4. Insurance companies .. 53
7.3.5. End user or company .. 54

7.4. Risks ... 54

8. CONCLUSIONS ... 56

REFERENCES ... 57

Document name: CUMULUS Evaluation Report ɀ Project Results summarized for external Evaluators
Version: 1.0

Security: Public

Date 29/06/2015

Page 3/ 58

List of Figures
Figure 1 - Monitoring-based Certification Model schema elements .. 20
Figure 2 - Assertion Formula Type ... 21
Figure 3 - Assertion Condition and Assertion Atomic Condition ... 21
Figure 4 - Event Condition Type .. 22
Figure 5 - State Condition Type ... 23
Figure 6 - Life Cycle Model schema (life cycle models are expressed as state transition models) 24
Figure 7 - Monitoring-based CM: UML diagram of Life Cycle Model .. 29
Figure 8 - d-delay in execution of the database certification model .. 48

List of Tables
Table 1 - CUMULUS Main Security Requirements ... 12
Table 2 - List of Certifiable Properties in CSA Catalogue ... 27
Table 3 - Average throughput and query execution time with and without the MySQL AUDIT plugin 49

Document name: CUMULUS Evaluation Report ɀ Project Results summarized for external Evaluators
Version: 1.0

Security: Public

Date 29/06/2015

Page 4/ 58

Executive Summary

This report presents the results of an internal evaluation carried out in CUMULUS which is made available
to external stakeholders in order to get an external, full and final validation of the outcomes of the project.

Cost efficient application of the CUMULUS approach is a key factor for the success of CUMULUS. Even
the greatest benefits and security improvements may not suffice in case the advantages of CUMULUS do
not weight out its additional costs (by cost we mean effort or time foremost, but of course this in the end
also has an impact on monetary costs of the approach, since everybody knows that time is money).

Therefore the costs have to be analysed thoroughly in order to have a reliable basis for making a
decision in favour or against CUMULUS. Obviously, for this it also has to be clear what the benefits are and
also risks of CUMULUS and how the claimed security improvements can be assured.

This deliverable describes CUMULUS in general, then concentrates on determining the costs of using
CUMULUS and finally focuses on the advantages and drawbacks that come with CUMULUS.

Document name: CUMULUS Evaluation Report ɀ Project Results summarized for external Evaluators
Version: 1.0

Security: Public

Date 29/06/2015

Page 5/ 58

1. Introduction

This document is an internal (non-public and confidential) report produced by the CUMULUS consortium
that includes an overview of the main results that have been produced in the first 32 months of the project.

The objective of the report is to provide background material to external stakeholders, who will be
invited to participate in the 2nd evaluation activity of CUMULUS, in order to help them formulate an
informed judgement about the merit of our results. The purpose of this report is not to provide an
exhaustive account of all the outcomes of the project. Its purpose is to provide a comprehensive summary
of outcomes and the features of them that we hope would be important in formulating a judgement as to
whether CUMULUS has generated concepts, techniques, methods and tools that have advanced the state
of the art in the certification of cloud security, and could influence the state of practice in this area.

To achieve the overall purpose of this report, we have selected specific outcomes of the project and
have presented them in a manner that focuses on specific perspectives. In particular, we have focused on
providing an account of:

¶ The CUMULUS infrastructure and how the security of it is addressed

¶ The different types of CUMULUS certification models and the expressive power that they offer
in specifying different types of security properties of cloud services, the types of evidence
required for certifying them, and the processes through which they should be certified.

¶ The level of assurance that CUMULUS can offer through the certification processes that it can
realise.

¶ The cost of applying the CUMULUS approach in relation to setting up the CUMULUS
infrastructure in order to perform a particular certification process and/or executing this
process using the infrastructure.

¶ The benefits and risks arising from the use of the CUMULUS approach.

In the remainder of this introductory section, we will provide an overview of CUMULUS and a roadmap to
the rest of this report.

1.1. Overview of CUMULUS

CUMULUS has been aimed at addressing the need of creating efficient and automated processes for
certifying security properties of cloud services of all the different layers in the cloud stack, including
infrastructure, platform and software services.

Cloud technology offers a powerful approach to the provision of such services without incurring the
considerable cost of owning, operating and maintaining the computational infrastructures required for this
purpose. However, despite being cost effective, this technology has raised concerns regarding the security,
privacy, governance and compliance of the data and software services offered through it, as the internals of
service provision are not visible to service consumers, and service providers are reluctant to take full
responsibility for the security of services that they offer through clouds, and accept liability for security
breaches. In such circumstances, there is a trust deficit that needs to be addressed.

The potential of certification as a means of addressing the lack of trust regarding the security of
different types of information and communication technology (ICT), including the cloud, has been widely
recognised. However, the recognition of this potential has not led to as a wide adoption as it was expected
originally. The reason for this is that ICT certification has traditionally (and currently) been carried out
through standards and certification schemes (e.g., ISO27000, ISO27002 and Common Criteria), which
involve predominantly manual ICT systems security auditing and inspection processes. Such processes tend

Document name: CUMULUS Evaluation Report ɀ Project Results summarized for external Evaluators
Version: 1.0

Security: Public

Date 29/06/2015

Page 6/ 58

to be lengthy and have a significant financial cost, which often prevents new and smaller technology
vendors from adopting it.

The certification of cloud services is not an exception of this overall trend. On the contrary, cloud
security certification is faced with additional challenges stemming mainly from the fact that most of the
existing certification schemes are not fit-for-purpose for cloud services, as they offer certification at distinct
time points without considering the continuum of service provision between them. Hence, existing
certification schemes cannot support dynamic changes in the structure, deployment and configuration of
the systems that underpin the provision of cloud services as, for example, the dynamic migration of data
and software components across different computational nodes within a cloud infrastructure or a cloud
federation.

The CUMULUS has been aimed at addressing the above need by developing and offering a certification
infrastructure that could be used to

(a) Define and execute automatically certification models, which can continuously and
incrementally acquire and analyse evidence regarding the provision of services on cloud
infrastructures.

(b) Use this evidence to assess whether the provision is compliant with required security
properties.

(c) Generate and manage certificates confirming the compliance of services if the acquired
evidence supports this.

CUMULUS has developed the infrastructure envisaged at the outset of the project. This infrastructure
supports the collection and analysis of different types of evidence, including for example test and
monitoring data for cloud service provision, as well as data gathered from Trusted Platform Modules. The
developed infrastructure can be used by certification authorities to generate and manage digital security
certificates for cloud services. It can also be used by cloud service providers operating at different levels of
the cloud stack, i.e., cloud infrastructure, platform and/or software service providers for self-certification.

The use of the CUMULUS infrastructure for different types of cloud services and security properties and
by different types of cloud service providers is enabled through the specification of appropriate
certification models, describing the process of collecting and analysing evidence in order to assess security
properties and the process of creating and managing digital certificates asserting the outcomes of this
process.

The CUMULUS infrastructure can be used to define certification models, which reflect certification
profiles and processes used by traditional certification schemes (e.g., common criteria) or new certification
profiles. The defined certification models are then automatically executed by the CUMULUS infrastructure
to realise the relevant certification processes and generate the documentation, evidence and digital
certificates expected by them.

The benefit of using CUMULUS is that the cost of certification can be reduced, its accountability and
auditability are increased, and service consumer confidence can increase by the presence of certificates
that arise from continuous evaluation of cloud services.

1.2. Structure of this report

The remainder of this report gives an overview of the main outcomes that are important for realising the
overall CUMULUS approach. In particular,

¶ Section 2 provides an overview of the CUMULUS infrastructure and the way that the security
and trustworthiness of it are addressed.

Document name: CUMULUS Evaluation Report ɀ Project Results summarized for external Evaluators
Version: 1.0

Security: Public

Date 29/06/2015

Page 7/ 58

¶ Section 3 provides an overview of the different types of certification models that can be
specified and executed using the CUMULUS infrastructure and gives examples whose purpose is
to demonstrate the expressiveness of these models.

¶ Section 4 discusses the level of assurance that can be offered to users of the CUMULUS
approach and infrastructure for the certification of cloud service security.

¶ Section 5 provides an analysis of the costs associated with the adoption of the CUMULUS
approach.

¶ Section 6 provides an overview of the benefits and risks of the CUMULUS approach.

The contents of all the above sections are the outcome of a synthesis of tangible outputs of CUMULUS and
a self-evaluation of their merit. This synthesis has been developed with the hope to facilitate an external
evaluation that we want to carry out in the remaining period until the end of the project.

Document name: CUMULUS Evaluation Report ɀ Project Results summarized for external Evaluators
Version: 1.0

Security: Public

Date 29/06/2015

Page 8/ 58

2. CUMULUS Infrastructure Security

This section presents how CUMULUS has addressed the security requirements set for it, making reference
to assumed trust chains. Throughout the section, we will go through the different security requirements
defined during the project and we will analyse in which way they have been (or not) met. We will consider
those requirements established specifically in deliverables devoted to it and those ones which are implicitly
established as findings of the work performed within the project.

First of all, as discussed in [D2.1], it is necessary to establish a binding between the specification of a
Service Level Agreement (SLA) and the service level the user actually gets from the provider. CUMULUS is
expected to provide some automation with this regard. The first requirement would be to provide a
standardized definition and measurement of security properties. [D2.1] proposes a solution by means of
the specification of security properties in an XML file. In this machine-readable XML file, the actual values
of the attributes configuring the properties can be extracted to check whether the SLA is being fulfilled. To
make this comparison, a new requirement comes up, having to do with the need to provide an SLA
specification language. This language would enable the provision of formal and machine-readable semantic
definitions of security properties that could enable the automatic generation of monitoring and testing
specifications for gathering the operational evidence required for certification [D2.1]. This couple of
requirements are paramount and are part of the essence itself of CUMULUS, since they refer to tools that
are essential to extract the measurement of the accomplishment of a particular security property, to
compare those values to the ones specified on the SLA and, by basing on such comparison, decide whether
or not issue the corresponding certificate. As a first step, SLA* language was extended to be able to cope
with the definition of a meaningful part of the security properties envisaged [D2.1]. Later on, a specific
language to define the assertions needed to define each security property was developed in the context of
the project [D2.2][D2.3][D2.4].

The platform must provide secure authentication and authorization. According to the definition in [D5.1],
ŀǳǘƘŜƴǘƛŎŀǘƛƻƴ ƛǎ ǘƘŜ ǇǊƻŎŜǎǎ ƻŦ ǾŜǊƛŦȅƛƴƎ ǘƘŀǘ άȅƻǳ ŀǊŜ ǿƘƻ ȅƻǳ ǎŀȅ ȅƻǳ ŀǊŜέΣ ǿƘŜǊŜŀǎ ŀǳǘƘƻǊƛȊŀǘƛƻƴ ƛǎ
ŀōƻǳǘ ǾŜǊƛŦȅƛƴƎ ǘƘŀǘ άȅƻǳ ŀǊŜ ǇŜǊƳƛǘǘŜŘ ǘƻ Řƻ ǿƘŀǘ ȅƻǳ ŀǊŜ ǘǊȅƛƴƎ ǘƻ ŘƻέΦ ¢ƘŜ ŦƻǊƳŜǊ ƛǎ ŀ ǇǊŜǊŜǉǳƛǎƛǘŜ ƻŦ ǘƘŜ
latter. User/psw feature is provided by the Access Control Manager and TPM is provided by the TC
Manager, so the CUMULUS infrastructure fulfils this security requirement. Once the user is authenticated,
the Access Control Module returns a security token. Each time the user wants to perform an action and use
the corresponding resources (i.e. the methods exposed by the API´s) it is checked if the token is signed and
if the user has the corresponding permissions to perform the action. This is done by using configuration
files. In the design of the architecture, it was proposed to check if the user had the proper XACML policies
to perform a particular action [D5.3], but in the end this was not accomplished since a simpler method was
preferred. Precisely-defined roles have been considered in order to do this check avoiding any kind of
ambiguity. The framework must be capable, for instance, to identify a claiming certifier as such, and
authenticate him accordingly. Then, this certifier will be allowed to access and use the certification
capabilities of the framework under the conditions established in the certification configuration, which
must keep its integrity [D6.1]. The framework provides the appropriate capabilities to fulfil these
requirements. Depending on the role the user has, the corresponding configuration must be maintained its
integrity. For instance, in the case of a developer, the Development configuration must be maintained to
ensure a correct operation of the framework.

In this sense, the authentication and authorization data from the users must be accessible to that/those
user/s playing the role of administrator [D6.1]. This happens actually.

CUMULUS infrastructure must verify the integrity of CUMULUS certification process: evidence collection,
certification models and security models. This is accomplished by the auditing module presented in [D5.3]
which exposes its corresponding Auditing API. In addition, another requirement is to certificate the
reliability of the agents obtaining the evidences, this role is played by TC-based certification which adds
authenticity to the agents [D5.3]. The evidence obtained is signed by the TC Manager [D2.4][D3.2]. Trusted

Document name: CUMULUS Evaluation Report ɀ Project Results summarized for external Evaluators
Version: 1.0

Security: Public

Date 29/06/2015

Page 9/ 58

Computing mechanisms are also used to ensure the integrity of the certificates by signing them. Each
certificate will be signed prior to be sent to the dashboard to be shown to the end-user. The
trustworthiness of the glue component (the Certification Manager) is also monitored by checking that the
public key it has is the one it was given at the beginning of the process (the TC Manager keeps the private
part of the pair) [D2.4][D3.2]. Besides, the integrity of user´s authentication and authorisation data must be
ensured so as to avoid the framework and its functions being accessed by malicious/improper users [D6.1].
Nevertheless, not only the agents´ trustworthiness must be ensured but also the communication between
such agents and the cloud systems being certified. The eHealth scenario protects this communication by
using technologies such as HTTPS, SSL and TLS. In addition the property defined in [D2.1] which describes
the target of certification (ToC) ability to create confidential communication with external parties has been
certified [D6.4][D3.2]. In the case of the Smart Cities scenario [D6.3] the WeLight server was configured to
redirect any HTTP request to the HTTPS port, therefore forcing to use SSL to ensure the security of
communications. This is quite important in a Smart Cities environment, prone to suffer cyberattacks with
unpredictable consequences [ATOS1][ATOS2][ATOS3][ATOS4][ATOS5]. With regard to the hooks needed to
perform the gathering of testing evidence, they are generally protected by means of control access systems
[D2.4].

In order to avoid attacks targeting the communication between the framework and the cloud system being
certified, the framework must provide for the evidence collection session the needed security protections,
which are specified in the corresponding certification configuration [D6.1].

All the data regarding the different customers using CUMULUS which are stored on the databases provided
by the infrastructure must remain protected. It is required to provide encryption ensuring that data can
only bŜ ŀŎŎŜǎǎŜŘ ōȅ ŀǳǘƘƻǊƛǎŜŘ ǇŀǊǘƛŜǎ ƘŀǾƛƴƎ ǘƘŜ ŎƻǊǊŜŎǘ ΨƪŜȅΩ ώ5рΦмϐΦ

For the sake of the reliability of the security provided with the certificates issued by CUMULUS, it is
required a real-time check of their validity. CUMULUS infrastructure includes in one of its API´s (Retrieval) a
specific method (CheckCertificateValidity) which makes this checking [D5.1].

Regarding the certification results, the CUMULUS Framework must maintain their integrity, including any
digital certificates that may have been produced by it. These results can include a digital certificate or can
be used by a Certifier to issue a certificate for a given cloud service [D6.1]. The certificates having been
generated by the CUMULUS Framework must not be called into question. Their non-reputability must be
assured in case any dispute comes up with regard to certification results. When the Certification
Communicator [D5.3] retrieves a certificate from any of the managers of the framework, it is signed. The
signing is made by the TC Manager by using the TPM. Prior to this, the certification model on which the
certificate is based was already signed by including in its XML an additional field specifying the name and
the role of who signed the certification model [D2.4]. This is necessary to establish a chain of trust
grounded on the produced certificates. TPM is capable to check the integrity of the server. It is used to
check the identity of the agents sending evidence (they are actually who they say they are). TPM checks
that the state of the server both at hardware and software level is the expected one. By doing this, the
integrity of the certificate is guaranteed. In the new release of the framework architecture [D5.4] the
functionality of validating the certification signature can be invoked from the dashboard. In fact, as
explained in [D2.4], the hypervisor can create, associated to each VM, a virtual platform instance consisting
of a virtual TPM (vTPM) and a virtual Root of Trust of Measurement (vRTM). These are in charge of
measuring the integrity of the HW and SW of the VM they are assigned. vTPM and vRTM are means to
ensure the integrity of the CUMULUS framework thanks to their capability to attest the good state of each
of the VM´s composing the framework. So far, this has been accomplished on the VM containing the testing
and the TC Manager.

Also related to TPM, for reasons discussed in [D2.4] it is stated that with regard to the process of advanced
certification models (multilayer, hybrid and incremental) there must be a valid TC-based certificate issued
attesting a valid integrity state of the ToC being certified. This is a security requirement established as

Document name: CUMULUS Evaluation Report ɀ Project Results summarized for external Evaluators
Version: 1.0

Security: Public

Date 29/06/2015

Page 10/ 58

condition to go to the following step and launch the certification process of the security property intended
to certify. This has been included as part of the certification methodology developed in CUMULUS.

It is requested the CUMULUS framework integrity to be checked. To do so, an auditing feature is provided.
The auditing module is in charge of gathering the traces delivered by the different components when a user
performs an action. The logs generated must be also ensured their integrity [D5.3] and any modification or
deletion of the traces (intentional or not) must be avoided. In consequence, the integrity of those traces
must be guaranteed [D6.1]. This has not been accomplished since the logs are being neither encrypted nor
protected. Besides, they must be fully available to the Framework Administrator to make use of them when
necessary. The framework auditor should also get access to these integrity check results. The difference
between the access of an Administrator and an Auditor is that for the former it is mandatory and for the
latter it is desirable. In turn, the relevance of the different kinds of traces is not the same. While the
availability of traces regarding the certification process (both producing and retrieving certificates) is
mandatory, the one of the traces related to the auditing is just desirable. By getting access to the integrity
check results, the accountability for the actions performed by the different kind of users, such as certifiers
or auditors, to name but two, can be demonstrated when necessary, inspiring trust. The traces are
associated an ID, and this is shown in the dashboard. Relevant events can be also traced for maintenance
and debugging purposes.

One of the very first requirements that came up from the very beginning of the project had to do with the
need of a chain of trust underlying the whole certification process, being its very foundation. The chain of
trust will be based on the notion of multiple signatures [D2.4]. Signatures are made by using XML signature
functionalities. The trust model must also hold in the case of certificate composition, discussed in [D2.4] as
well. To address this case, little changes in the chain of trust are made since no new evidence is generated,
but evidence of existing certificates is put together.

Finally, it was specified in [D5.3], in the design of the architecture, that the communication between web
services would be secured by following the principles of WS-Security Standards. Due to the lack of time it
was not accomplished in the end. Nevertheless the innovation brought by this technology is not really
relevant and the consortium decided to put the focus and the effort on other technological issues like those
regarding the added-value brought by TPM in terms of security, to name but one.

The following table sums up the main security requirements established throughout the different tasks of
the project and, for each one, a little comment on the extent to which they were fulfilled:

REQUIREMENT RELATED

DELIVERABLES
SOLUTION FULFILMENT

Provide standardized
definition and measurement
of security properties

D2.1 Specification of security properties by means of an XML file
Parameters to measure the fulfilment of the security
properties
Actual values of such parameters stored in an XML file

High

Provide an SLA specification
language

D2.1
D2.2
D2.3
D2.4

Extending SLA* as a first step
Defining a specific language suitable with the purposes of the
project

High

The platform must provide
secure authentication and
authorization

D5.1
D5.3

User/password and TPM authentication are supported
The Access Control Manager provides user/password features
and the TC Manager provides TPM, fulfilling this requirement
Accurate definition of roles

High

The configuration of the
framework for certification
purposes must keep its
integrity

D6.1 The framework provides the appropriate capabilities High

The configuration of the
framework for development
tasks must keep its integrity

D6.1 The framework provides the appropriate capabilities High

CUMULUS Infrastructure must D5.3 The Auditing Module, exposing the corresponding Auditing High

Document name: CUMULUS Evaluation Report ɀ Project Results summarized for external Evaluators
Version: 1.0

Security: Public

Date 29/06/2015

Page 11/ 58

verify the integrity of
CUMULUS certification
process

API, verifies the integrity of the evidence collection, the
certification models and the security models

Certificate the reliability of the
agents obtaining the
evidences

D5.3
D2.4
D3.2

TC-based certification adds authenticity to the agents
TC Manager signs the evidence obtained
The trustworthiness of the Certification Manager is monitored
by a public-private key mechanism by means of TPM

High

The integrity of user´s
authentication and
authorization data must be
ensured so as to
avoid the framework and its
functions being accessed by
malicious/improper users

D6.1 Such integrity is guaranteed by the framework High

The communication between
the agents and the cloud
system being certified must
be ensured

D2.1
D2.4
D3.2
D6.3
D6.4

Using HTTPS/SSL, HTTPS/TLS 1.2, TLS3.0
Redirection of HTTP requests to the HTTPS port
Control access systems for the hooks
Two possibilities of accomplishing the testing: self-assessment
and certification-as-a-service
Specify in the corresponding certification configuration the
needed security protection for the evidence collection session

Medium

All the data regarding the
different customers using
CUMULUS which are stored
on the databases provided by
the infrastructure must
remain protected.

D5.1 Encryption is provided ensuring that data can only be accessed
by authorised parties having the correct 'key'

High

A real-time check of the
validity of the certificates
issued by CUMULUS is
required

D5.1 CUMULUS Infrastructure includes in one of the API´s
(Retrieval) a specific method (checkCertificateValidity) to
accomplish this

High

The CUMULUS Framework
must maintain the integrity of
the certification results,
including any digital
certificates that may have
been produced by it. The
framework must produce
certification results only from
consistent evidence collection
results

D6.1
D5.3
D5.4
D2.4

The framework is capable to provide this certainty thanks to
the process of issuing certificates itself, which is based on the
gathering of the appropriate evidence, and the integrity
provided to the agents involved and the data and traces
appearing throughout the certification process.
A chain of trust grounded on the produced certificates is
established, and TPM (and virtual TPM) plays a relevant role in
the process

High

When launching and
advanced certification process
(multilayer, hybrid or
incremental) there must be a
valid TC-based certificate
issued attesting valid integrity
state of the ToC being
certified

D2.4 This has been included as part of the certification
methodology developed in CUMULUS

High

The CUMULUS Framework
integrity is requested to be
checked

D6.1 Auditing feature. The auditing module gathers the traces by
the different components when a user performs an action

High

The framework must ensure
the integrity of the logs
generated and any
modification (intentional or
not) of the traces must be
avoided

D5.3
D6.1

This has not been accomplished Low

The logs generated must be
fully available to the
Framework Administrator

D6.1 The framework provides the appropriate capabilities High

The auditor should get access D6.1 The framework provides the appropriate capabilities High

Document name: CUMULUS Evaluation Report ɀ Project Results summarized for external Evaluators
Version: 1.0

Security: Public

Date 29/06/2015

Page 12/ 58

to the integrity check results
of the logs

There must be a chain of trust
underlying the whole
certification process, being its
very foundation

D2.4 It is defined a signature process where responsibilities are
spread across the certification process lifecycle and the
entities involved in it.

High

Within the architecture, the
communication between
webservices should be
secured by following the
principles of WS-Security
Standards.

D5.3 Not accomplished in the end Low

Table 1 - CUMULUS Main Security Requirements

Document name: CUMULUS Evaluation Report ɀ Project Results summarized for external Evaluators
Version: 1.0

Security: Public

Date 29/06/2015

Page 13/ 58

3. Representational expressiveness of CUMULUS certification models

CUMULUS can generate different types of digital certificates for cloud security properties. These are:

¶ Certificates that assert the satisfaction of a given security property by a cloud service based on
the collection and analysis of test data. In CUMULUS, these certificates are known as test based
certificates, and may relate to cloud services at the infrastructure, platform or software layer.
Test based certificates are produced by the execution of test based certification models
(TBCMs).

¶ Certificates that assert the satisfaction of a given security property by a cloud service based on
the collection and analysis of data collected by monitoring the service. In CUMULUS, these
certificates are known as monitoring based certificates and may relate to cloud services at the
infrastructure, platform or software layer. Monitoring based certificates are produced by the
execution of monitoring based certification models (MBCMs).

¶ Certificates that assert the satisfaction of a given security property by a cloud service based on
data collected by Trusted Computing (TC) mechanisms provided by Trusted Platform Modules
(TPM). In CUMULUS, these certificates are known as Trusted Computing based certificates and
relate to cloud services at the infrastructure layer. Trusted Computing based certificates are
produced by the execution of Trusted Computing based certification models (TCBCMs).

¶ Certificates that assert the satisfaction of a given security property by a cloud service based on
the collection and analysis of data collected by testing and monitoring the service. In CUMULUS,
these certificates are known as hybrid certificates and may relate to cloud services at the
infrastructure, platform or software layer. Hybrid certificates are produced by the execution of
hybrid based certification models (HBCMs).

In the following, we present an overview of the certification models that we use to specify the process of
collecting the evidence and producing the different types of certificates summarised above, i.e., TBCMs,
MBCMs, TCBCMs and HBCMs.

3.1. Test Based Certification Mo dels

In this Section, we present a summary of Test-based certification model.

3.1.1. Certification Model element

The Test-based Certification Model fully complies with the CUMULUS Meta-Model in D2.3. The Certification
Model specification schema includes the elements of the Figure 1.

Document name: CUMULUS Evaluation Report ɀ Project Results summarized for external Evaluators
Version: 1.0

Security: Public

Date 29/06/2015

Page 14/ 58

FIGURE 1 ς TEST-BASED CERTIFICATION MODEL

FIGURE TBX ς TEST-BASED CERTIFICATION MODEL (NI NOT ISSUED, I ISSUED, S SUSPENDED, E EXPIRED, R REVOKED)

In the following we briefly recap the structure and the meaning of each element in Figure 15.

¶ The CertificationModelID element defines the unique identifier of a CM inside CUMULUS
framework. It is part of the common elements.

¶ The LifeCycle element models the certificate evolution from its issuing to possible expiration or
revocation. It is part of the common elements. In traditional certification, the Life Cycle is in the
bailiwick of the Certification Authority issuing the certificate. It is executed statically looking at the
produced evidence and evaluating the sufficiency conditions on the validity of the certificate (i.e.
certificate issuing). Decisions like certification suspension, revocation or expiration are normally
taken asynchronously and offline by the Certification Authority, for instance as reaction to new
vulnerabilities discovery. In a cloud scenario, where the certificate Life Cycle is managed at run-
time on the basis of evolving evidence, the static intervention of a Certification Authority is not
always feasible. The Life Cycle definition requires full machine-readable description of certificate
states and the events that trigger transitions between them. The certificate Life Cycle is modelled
as a deterministic finite state automaton with each vertex representing a possible state of the
certificate with label (e.g., issued, suspended, revoked, expired) and each edge representing a
transition between two states. Each edge is labelled with a condition over certificate's evidence
that regulates the transition. For instance, a transition from ISSUED state to SUSPENDED state can
be triggered by a condition saying that the amount of positive evidence in a certain period of time is
going under a predefined threshold. Figure TBX shows the Test-based Life Cycle automata. An
example of Life Cycle in a Test-based CM is presented 3.1.1

Document name: CUMULUS Evaluation Report ɀ Project Results summarized for external Evaluators
Version: 1.0

Security: Public

Date 29/06/2015

Page 15/ 58

¶ The SecurityProperty element defines the Security Property, which has to be certified by the
Certification Model instance. It is part of the common elements. The securityPropertyType is an
extension of the propertyDefType, already defined in (CUMULUS, D2.1 Development of security
properties specification scheme and security dependency models, 2013) and includes some other
parameters relevant to the property definition.

¶ The Signature element provides the public-key signature of the certification framework that signed
the CM Instance (see D2.3 for more details on the role of CM Instance) via delegation from the
certification authority. It is part of the common elements. The public key signature can be verified
by any entity using the CM and is necessary to establish a chain of trust grounded on the produced
certificates. It also defines the Tester executing the Certification Model and signing it for integrity.
The Tester can be a Certification Authority dealing with the overall certification process or a Lab
accredited by the Certification Authority.

¶ The Target of Certification (ToC) defines the certification perimeter in terms of involved
mechanisms and specifies the layer (i.e., service, platform and infrastructure) of certificate binding.
It is part of the common elements. Each mechanism belongs to a cloud layer and can support a
security property alone or in cooperation with other mechanisms in ToC. For instance, let us
consider a Toc for security property p=(Confidentiality, ctx=in-transit and at-rest). ToC includes two
mechanisms mac1 and mac2 related to service layer and infrastructure layer, respectively, and its
binding is defined at service layer. Mechanism mec1 = {encryption, algo = XML-encryption, protocol
= WS-Security, level=message-in-transit} refers to a mechanism implementing an encrypted
communication channel, mechanism mec2 = {encryption, algo = encrypted FS} identifies a
mechanism implementing an encrypted file system for protecting data at rest. ToC includes also
Targets of Test (ToTs) sub-element (the sub-element specifies the accessible APIs for testing the
ToC) and the operative condition sub-elements (they describe the operational conditions under
which the ToC works and include all the necessary technical information, such as the vendor and
the release related info, installation constraints)

o ToTs: Target of Test is a set of smaller and more specific targets that compose the whole
ToC. Each ToT describes the target of an Abstract Collector. The interfaces specify where
the Abstract Collector operations insist on. Type provides general information on the type
of interface (such as public interface, internal api, configuration file), while call specifies the
reachable interface.

FIGURE 2 ς TOT ELEMENT TYPE

Document name: CUMULUS Evaluation Report ɀ Project Results summarized for external Evaluators
Version: 1.0

Security: Public

Date 29/06/2015

Page 16/ 58

¶ The CertificationModelTemplateID element represents a reference to the Certification Model
Template this CM was built on. See D2.3 for more details on the role of CM Template.

¶ The Collectors element was not changed significantly from what described in D2.3, it contains a
set of elements, called AbstractCollector and Collector, whose goal is to describe the Test-based
evidence collection process for a given property and ToC. Each AbstractCollector describes testing
activities without the definition of the real test cases to be executed on the ToC. Its scope is to
define a set of testing flows for a specific test type (e.g., random input, input partitioning) and test
category (e.g., functional, robustness, penetration). Each Collector element is defined according to
an element AbstractCollector and specifies the real test cases to be executed. AbstractCollector
and Collector play a significative role in the process of instantiating a CM Template into a CM
Instance (see Section 3.1.1 for more details). A change from what stated in the last Deliverable is
the specification of the probe repository as an element of the Collector. Figure 17 shows our
Collectors element schema.

FIGURE 3 ς COLLECTORS ELEMENT TYPE

o The Aggregator sub-element describes how to collect the test outcomes and how the
evidence must be aggregated. In our Certification Model the Aggregator is a sub-element
of Abstract Collector and Collector. It also deals with criteria for interpreting test results in
terms of sufficiency of collected results and includes performance thresholds that are
appropriately scaled and arranged in different levels to provide different levels of
assurance.

¶ The Context element details the configuration of tools that were used in the certification process. It
defines the required Test Agent (TA) types to execute all testing activities. Each Test Agent type
may specify a specific deployment over a specific cloud or forward inputs for testing activities to an
already deployed TA.

3.1.1. An Example of Test Based Certification Models

Below, we describe an example of Test-Based Certification.

The CM we analyse aims to certify a web service for the property IAM:account-control:limitation-of-failed-
user-authentications. Its code is shown at the end of this paragraph.

Document name: CUMULUS Evaluation Report ɀ Project Results summarized for external Evaluators
Version: 1.0

Security: Public

Date 29/06/2015

Page 17/ 58

Property IAM:account-control:limitation-of-failed-user-authentications guarantees that any series of N
unsuccessful login attempts to an account results in the suspension of the account for a duration T
(expressed as a function of N), or until re-enabled by a user with adequate administrative privileges.

This property has three performance attributes: the number of unsuccessful attempts needed to trigger a
suspension delay (triggerCount expressed as integer), and two parameters of the delay function (delayA
and delayB).

The target of certification (ToCs) is the e-health web service (a CUMULUS pilot). The target of test define
the interfaces to be addressed by the test cases, in this case the test addresses the web service login
interface.

Lƴ ǘƘƛǎ /aΣ ǿŜ ƘŀǾŜ ƻƴƭȅ ƻƴŜ ŎƻƭƭŜŎǘƻǊ ǘƘŀǘ ǿƛƭƭ ǊŜǇŜŀǘ ǘƘŜ ǎŀƳŜ ǘŜǎǘ όάŎƭƻƎƛƴέύ ŦƻǊ ŀƭƭ ǘƘŜ ǘŜǎǘ ŎŀǎŜǎ
available. Once the test cases are sent they will be evaluated according to what written in the life-cycle
part.

Example of Test-Based Certification Model (ATOS eHealth Application)
<?xml version ="1.0" encoding ="UTF- 8" ?>

<test:testBasedCertifcationModel

 xmlns:sch ="http://www.ascc.net/xml/schematron"

xmlns:ec ="http://slasoi.org/monitoring/citymonitor/xmlrule"

 xmlns:sla ="http://www.slaatsoi.eu/slamodel"

xmlns:jxb ="http://java.sun.com/xml/ns/jaxb"

 xmlns:cm ="http://www.cumulus.org/certificate/model"

xmlns:test ="http: //www.cumulus.org/certificate/model/test"

 xmlns:xsi ="http://www.w3.org/2001/XMLSchema - instance"

 xsi:schemaLocation ="http://www.cumulus.org/certificate/model/test

file:/Users/iridium/Documents/workspace/testManager/XMLRepository/CertificationModel/testb

asedCM.xsd" >

 <CertificationModelID >cumulus:cm:id:test:071103 </ CertificationModelID >

 <LifeCycle >

 <InitialState stateId ="not_issued" />

 <states >

 <state ><atomicState stateId ="not_issued" name="not issued" /></ state >

 <state ><atomicState stateId ="issued" name="issued" /></ state >

 <state ><atomicState stateId ="suspended" name="suspended" /></ state >

 <state ><atomicState stateId ="expired" name="expired" /> </ state >

 <state ><atomicState stateId ="revoked" name="revoked" /> state >

 </ states >

 <transitions >

 <transition From="not_issued" To="issued" >

 <WhenCondition >

 <Condition >

 <collectorCondition >clogin </ collectorCondition >

 </ Condition >

 </ WhenCondition >

 </ transition >

 <transition From="issued" To="revoked" >

 <WhenCondition negated ="true" >

 <Condition >

 <collectorCondition >clogin </ collectorCondition >

 </ Condition >

 </ WhenCondition >

 </ transition >

 <transition From="revoked" To="issued" >

 <WhenCondition >

 <Condition >

 <collectorCondition >clogin </ collectorCondition >

 </ Condition >

 </ WhenCondition >

 </ transition >

 </ transitions >

 </ LifeCycle >

 <Signature ><Name>FUB</ Name><Role >Certification Authority </ Role ></ Signature >

 <ToC Id ="toc - ehealth" >

Document name: CUMULUS Evaluation Report ɀ Project Results summarized for external Evaluators
Version: 1.0

Security: Public

Date 29/06/2015

Page 18/ 58

 <CloudLayer >SaaS</ CloudLayer >

 <ConcreteToc >ehalth ws </ ConcreteToc >

 <TocDescription ></ TocDescription >

 <TocURI >https://ehealthws.150.214.47.153.xip.io:35443 </ TocURI >

 <ToTs>

 <ToT collectorRefID ="clogin" >

 <Interface stateRef ="*" >

 <type >Login Interface </ type ><call >ehealth.py </ call >

 </ Interface >

 </ ToT>

 </ ToTs>

 </ ToC>

 <SecurityProperty

 SecurityPropertyDefinition ="Series of N unsuccesful logins, suspension of

account (for a duration T)" >

 <sProperty class ="CSA:IAM:Account - control:Limitation - of - failed - user -

authentication:triggerCount" >

 <propertyPerformance >

 <propertyPerformanceRow >

 <propertyPerformanceCell

name="tri ggerCount" >5</ propertyPerformanceCell >

 </ propertyPerformanceRow >

 </ propertyPerformance >

 <propertyParameterList />

 </ sProperty >

 </ SecurityProperty >

 <CertificationModelTemplateID >cumulus:cm:template:test:02 </ CertificationModelTemplat

eID >

 <Collectors >

 <AbstractCollector Id ="0" >

 <TestCategory >Functionality.Input partitioning </ TestCategory >

 <TestType >Random Input </ TestType >

 <TestDescription >login and lockout </ TestDescription >

 <TestGenerationModelLink >www.cumulus -

project.eu/locjout.sts </ TestGenerationModelLink >

 <TestCases >

 <TestCase >

 <ID >1</ ID >

 <Description >lockout </ Description >

 <TestInstance Operation ="1" >

 <Preconditions ></ Preconditions >

 <HiddenCommunications ></ HiddenCommunications >

 <Input >admin=admin password=admin123 </ Input >

 <ExpectedOutput >login as admin </ ExpectedOutput >

 <PostConditions ></ PostConditions >

 </ TestInstance >

 <TestInstance Operation ="2" >

 <Preconditions ></ Preconditions >

 <HiddenCommunications ></ HiddenCommunications >

 <Input >username=userCumulusT password=pass1234 </ Input >

 <ExpectedOutput >user created </ ExpectedOutput >

 <PostConditions ></ PostConditions >

 </ TestInstance >

 <TestInstance Operation ="3" >

 <Preconditions ></ Preconditions >

 <HiddenCommunications ></ HiddenCommunications >

 <Input >username=userCumulusT password=xxx </ Input >

 <ExpectedOutput >fail login </ ExpectedOutput >

 <PostConditions ></ PostConditions >

 </ TestInstance >

 <TestInstance Operation ="4" >

 <Preconditions ></ Preconditions >

 <HiddenCommunications ></ HiddenCommunications >

 <Input >username=userCumulusT password=password </ Input >

 <ExpectedOutput >fail login </ ExpectedOutput >

 <PostConditions ></ PostConditions >

Document name: CUMULUS Evaluation Report ɀ Project Results summarized for external Evaluators
Version: 1.0

Security: Public

Date 29/06/2015

Page 19/ 58

 </ TestInstance >

 <TestInstance Operation ="5" >

 <Preconditions ></ Preconditions >

 <HiddenCommunications ></ HiddenCommunications >

 <Input >username=userCumulusT password=pwdtest </ Input >

 <ExpectedOutput >fail login </ ExpectedOutput >

 <PostConditions ></ PostConditions >

 </ TestInstance >

 <TestInstance Operation ="6" >

 <Preconditions ></ Preconditions >

 <HiddenCommunications ></ HiddenCommunications >

 <Input >username=userCumulusT password=userCumulus </ Input >

 <ExpectedOutput >fail login </ ExpectedOutput >

 <PostConditions ></ PostConditions >

 </ TestInstance >

 <TestInstance Operation ="7" >

 <Preconditions ></ Preconditions >

 <HiddenCommunications ></ HiddenCommunications >

 <Input >username=userCumulusT password=passwordeasy </ Input >

 <ExpectedOutput >fail login </ ExpectedOutput >

 <PostConditions ></ PostConditions >

 </ TestInstance >

 <TestInstance Operation ="8" >

 <Preconditions ></ Preconditions >

 <HiddenCommunications ></ HiddenCommunications >

 <Input ></ Input >

 <ExpectedOutput >lockout true </ ExpectedOutput >

 <PostConditions ></ PostConditions >

 </ TestInstance >

 </ TestCase >

 </ TestCases >

 </ AbstractCollector >

 <Collector Descriptor ="login and lockout" Id ="clogin" isStatic ="false"

 toDeploy ="true" >

 <ConditionForSomministration >

 <DeltaTime >PT15H</ DeltaTime >

 </ ConditionForSomministration >

 <Aggregator AggregatorDescription ="alltrue" transient ="1" >

 <TestMetrics >

 <TestMetric name="lockout" >

 <expected >true </ expected >

 <tested ></ tested >

 <operation >=</ operation >

 </ TestMetric >

 </ TestMetrics >

 </ Aggregator >

 <AbstractCollectorRef id ="0" />

 </ Collector >

</ Collectors >

</ test:testBasedCertifcationModel >

3.2. Monitoring Based Certification Models

3.2.1. Overview of MBCM specification schema

As discussed in the introduction of Section 3, monitoring based certificates may be generated on the basis
of evidence gathered through continuous monitoring from the cloud provider. For such certificates, the
target of certification, the security property to be certified, the extent of the monitoring evidence that must
be collected to assess the property and the process of certification are specified by a monitoring based
certification model (MBCM). This model drives the operation of the CUMULUS framework, which produces
the certificates. These certificates are then signed off by a certification authority that accepts the MBCM
which defined the certification process either automatically or following some audit.

Document name: CUMULUS Evaluation Report ɀ Project Results summarized for external Evaluators
Version: 1.0

Security: Public

Date 29/06/2015

Page 20/ 58

Figure 1 - Monitoring-based Certification Model schema elements

A monitoring based certification model is specified in an XML based language whose top-level structure is
shown in Figure 1. According to this schema, an MBCM specifies:

(1) the cloud service to be certified (i.e., a Target of Certification (TOC));

(2) the security property to be certified for TOC;

(3) the certification authority who will sign the certificates generated by the model;

(4) an assessment scheme defining general conditions regarding the evidence that must be
collected for being able to issue a certificate;

(5) additional validity tests regarding the configuration of the cloud provider and the CUMULUS
framework itself that must be satisfied prior to issuing certificates;

(6) the monitoring configurations that will be used in order to collect the evidence required for
generating certificates;

(7) the way in which the collected evidence will be aggregated in certificates (evidence
aggregation); and (8) a life cycle model that defines the overall process of issuing certificates.

In MBCMs, a ToC is specified as a concrete endpoint with a set of service interfaces that are offered by it to
external parties (provided interfaces) and a set of interfaces required of external parties (required
interfaces). The security property to be certified is specified by assertions. Assertions are formulas in a
temporal logic language that is based on Event Calculus. An assertion is specified as an
AssertionFormulaType element in XML and, as shown in Figure 2, it is specified as a temporal formula of the
form:

Assertion: [precondition] Ý postcondition

The (optional) precondition element in the formula determines the conditions under which the assertion
should be checked (i.e., the conditions which if become true should trigger the checking of the assertion),
and the postcondition element determines the conditions that are guaranteed to hold (i.e., should become
true if the preconditions are true). Pre-conditions and post-conditions are specified as elements of the XML
type AssertionConditionType and may include quantified time and non-time variables.

Document name: CUMULUS Evaluation Report ɀ Project Results summarized for external Evaluators
Version: 1.0

Security: Public

Date 29/06/2015

Page 21/ 58

Figure 2 - Assertion Formula Type

The type AssertionConditionType enables the definition of atomic or complex logical conditions. This is
enabled by the structure of this type, which is shown in Figure 3. An atomic condition can be of three
different types:

¶ an event condition (i.e., an element of eventConditionType)

¶ a state condition (i.e., an element of type stateConditionType) or

¶ a relational condition (i.e., an element of type relationalConditionType).

Event conditions are conditions regarding the occurrence of events related to the TOC that the assertion,
which includes the condition, refers to (e.g., the occurrence of an invocation (call) of an operation in one of
ǘƘŜ ¢h/Ωǎ ƛƴǘŜǊŦŀŎŜǎ ƻǊ ŀ ǊŜǎǇƻƴǎŜ ǘƻ ǎǳŎƘ ŀ ŎŀƭƭύΦ ! ǎǘŀǘŜ ŎƻƴŘƛǘƛƻƴ ƛǎ ŀ ŎƻƴŘƛǘƛƻƴ ŀōƻǳǘ ǘhe state of the
system that is being monitored at a given time point (e.g., a condition stating a certain user has already
logged in to it or that the system is TPM enabled). A relational condition is a condition about the value of a
variable used in an assertion (e.g., a condition requiring a variable to have a certain value or a condition
requiring two variables to have the same value).

Figure 3 - Assertion Condition and Assertion Atomic Condition

Document name: CUMULUS Evaluation Report ɀ Project Results summarized for external Evaluators
Version: 1.0

Security: Public

Date 29/06/2015

Page 22/ 58

An event condition is a condition expressing the occurrence or the enforcement of the execution of an
event. This event can be: (a) the call of an operation (i.e., a call event), (b) a response to a call of an
operation (i.e., a reply event), or (c) an execution of an operation that must be invoked by the monitor itself
(i.e., an execute event). An event condition is defined as an XML element of the XML type
eventConditionType shown in Figure 4. As shown in this figure, events in the assertion language of
CUMULUS are time stamped. Hence, an event condition is always associated with a time variable (tVar)
that expresses the time stamp of the event and which may be restricted to be in a particular time range,
i.e., [fromTime, toTime]. The lower and upper boundary of such ranges (i.e., fromTime, toTime) can be
defined parametrically as linear expressions over time variable value and constants.

Figure 4 - Event Condition Type

The second type of atomic conditions in an assertion is state conditions. State conditions refer to the state
of the system that is being monitored at a particular instance of time. A state condition may, for example,
be that a particular user u1 is successfully logged into a system with a role r1 at a particular instance of
time t1. Conditions are expressed by n-ary relations of the form relation-name(arg1Σ ΧΣ ŀǊƎn). In line with
Event Calculus, such relations can be set up at the beginning of the operation of a system or initiated by
events that occur at specific time points during the operation of the system. They can also be terminated
by other events. From the time that a state condition is initiated by an event and until the time that it is
terminated by an event the condition holds (i.e., it is assumed to be True). In the case of our previous
example, the state condition expressing that u1 has been logged in with role r1, would be expressed by the
relation loggedIn(u1,r1). This condition would be initiated by a logging in event by u1 and would be
terminated by a logging out event by u1.

Document name: CUMULUS Evaluation Report ɀ Project Results summarized for external Evaluators
Version: 1.0

Security: Public

Date 29/06/2015

Page 23/ 58

Figure 5 - State Condition Type

State conditions can be specified as instances of the type stateConditionType. The structure of this type is
shown in Figure 5. The type supports the specification of elements expressing the initiation, termination
and holding of state conditions. In particular, a stateConditionType element can be:

(i) An initiates element which expresses the initialisation of a state condition by some event at
some time point. The definition of such elements consists of: (a) the event element which
causes the initialisation of the state value; (b) the state of the system that is initiated by the
event; and (c) the time when the state is initiated by the event (timeVar).

(ii) A terminates element which expresses the termination of a state by an event at a given time
point (timeVar).

(iii) A holdsAt element which expresses a condition that a system state must be true (i.e., hold) at
specific time point. holdsAt elements are defined by: (a) n state element that represents the
state value (see initiates element above) and (b) a timeVar that represents the time when the
state is held (this element is of complex type timevariableType).

(iv) An initially element that represents a state holding initially when the operation of a system
starts.

Assertions in a certification model can be of two types: assumptions, or monitoring rules. Monitoring rules
are assertions, which express the conditions that must be satisfied during the monitoring process of a ToC.
Assumptions are assertions, which are used to record and update state variables indicating the state of the
ToC during the monitoring period.

The assessment scheme defines conditions regarding the evidence that must be collected in order to be
able to issue a certificate. These conditions are related to: (i) the sufficiency of the collected evidence, (ii)
the expiration period for certificates, and (iii) anomalies and conflicts that should be monitored during the
certification process. The evidence sufficiency conditions may relate to the minimum required period of
time that the ToC should be monitored and the minimum number and representativeness of events (i.e.,
instances of ToC operations) that should be gathered before a certificate can be issued. In an MBCM,
anomalies refer to: (1) potential attacks on TOC, (2) other suspicious behaviour or (3) operational
conditions related to the security property that is to be certified. (1)-(3) are monitored since they may
potentially affect the satisfiability of the security property and, therefore, lead to the suspension or

Document name: CUMULUS Evaluation Report ɀ Project Results summarized for external Evaluators
Version: 1.0

Security: Public

Date 29/06/2015

Page 24/ 58

ǊŜǾƻŎŀǘƛƻƴ ƻŦ ǘƘŜ ŎŜǊǘƛŦƛŎŀǘŜ ƎŜƴŜǊŀǘŜŘ ōȅ ǘƘŜ ƳƻŘŜƭΦ ¢ƘŜ ŘŜŦƛƴƛǘƛƻƴ ƻŦ ǘƘŜ ǇƻǘŜƴǘƛŀƭ άŀƴƻƳŀƭƛŜǎέ ǘƘŀǘ
should be monitored as part of a certification model should be based on an analysis of potential attacks.
This analysis should cover ways in which the behaviour of different external actors that interact with TOC
and the overall operating conditions of the interaction between TOC and these actors may affect the
satisfaction of the given security property by the TOC. Like security properties, anomalies are also specified
as assertions, except that their violation does not lead automatically to the suspension/revocation of a
certificate.

Conflicts aim to capture cases where a given security property would not be satisfied if it were to be
assessed over different monitoring aggregation periods. The availability of a service may, for instance, be
above 99% if assessed on a monthly basis by certification model whose security property refers to this
period of assessment, but it may be below this threshold if shorter/longer assessment intervals are
considered. In an MBCM conflicts are defined by alternative assessment periods for the security property.

The life cycle model of an MBCM defines the process by which certificates of the MBCM can be
generated and managed (e.g., suspended, revoked). In an MBCM, a life cycle model (LCM) is defined by a
state transition model expressed in XML, as shown in Figure 6. In particular, a life cycle model is defined by
a set of states and transitions between them. States can be composite or atomic. Composite states are
refined into parallel or mutually exclusive substates. All state types can be associated with actions that are
executed upon entry to or exit from the state. Transitions are associated by call events or triggering
conditions (when-conditions). They can also be guarded by further conditions and be associated with
actions that are executed when a transition is to be traversed and prior to arriving at the destination state.
Actions correspond to invocations of operations in required and provided interfaces that are defined as
part of an LTM. Provided interfaces include operations offered from the CUMULUS framework and required
interfaces define operations of external tools.

Figure 6 - Life Cycle Model schema (life cycle models are expressed as state transition models)

Monitoring based certification models can be used to specify most of the security properties in the CSA
catalogue [CUMULUS D2-2, 2012] that was created as a list of security properties to drive the development
of research in CUMULUS. Examples of these properties including non-repudiation (AIS:non-
repudiation:non-repudiation-of-origin), confidentiality at internal data access level (AIS:confidentiality:data-
access-level) and external access level (AIS:confidentiality:external-data-exchange-confidentiality), and
network level authentication (AIS:authentication:network-authenticated-server-access) have been given
[CUMULUS D3-2, 2014] and a full analysis of the properties in the CSA catalogue for which monitoring
based certification models can be specified is provided in Table 2.

Document name: CUMULUS Evaluation Report ɀ Project Results summarized for external Evaluators
Version: 1.0

Security: Public

Date 29/06/2015

Page 25/ 58

Property Certifiable

Domain Property name Monitoring Testing

AIS integrity Software-integrity-protection Yes Yes

AIS integrity Software-integrity-detection Yes Yes

AIS integrity Malware-protection Yes Yes

AIS integrity Data-alteration-prevention Yes Yes

AIS integrity Data-alteration-detection Yes Yes

AIS confidentiality Data-access-level Yes (Y2) Yes

AIS confidentiality External-data-exchange-confidentiality Yes (Y2) Yes

AIS authentication Authentication-of-data-origin Yes (Y2) Yes

AIS authentication Network-authenticated-server-access Yes (Y2) Yes

AIS authentication
Network-mutually-authenticated-client-
server-channel

Yes Yes

AIS Non-repudiation Non-repudiation-of-origin Yes (Y2) Yes

AIS Non-repudiation Non-repudiation-of-receipt Yes Yes

AIS
Information-flow-
control Blacklist

Yes Yes

AIS
Information-flow-
control Whitelist

Yes Yes

AIS auditability
Percentage-of-system-with-time-
synchronization

Yes Yes

AIS auditability Maximum-measured-time-drift Yes Yes

AIS auditability User-traceability Yes Yes

AIS auditability Security-event-storage-integrity-level Yes Yes

IVS isolation Tenant-isolation-level Yes Yes

IVS isolation Colocation-indistinguishability Yes Yes

IPY portability Data-portability Yes Yes

SEF

Incident-
management-
quality Mean-time-between-incidents

Yes Yes

SEF

Incident-
management-
quality Percentage-of-timely-incident-reports

Yes Yes

SEF

Incident-
management-
quality Percentage-of-timely-incident-resolutions

Yes Yes

IAM
Identity-
assurance

User-authentication-and-identity-assurance-
level

Yes Yes

IAM
Credential-
security Password-storage-protection-level

Yes Yes

IAM Account-control
Percentage-of-timely-suspension-of-unused-
user-accounts

Yes Yes

IAM Account-control Limitation-of-failed-user-authentication Yes Yes

IAM Account-control Inactive-session-blocking Yes Yes

IAM Account-control Limitation-parallel-active-sessions Yes Yes

EKM key-management Cryptographic-brute-force-resistance Yes Yes

EKM key-management Key-generation-quality Yes Yes

EKM key-management Key-access-control-level Yes Yes

EKM key-management Cryptographic-module-protection-level Yes Yes

Document name: CUMULUS Evaluation Report ɀ Project Results summarized for external Evaluators
Version: 1.0

Security: Public

Date 29/06/2015

Page 26/ 58

Property Certifiable

Domain Property name Monitoring Testing

GRM Risk-control
Percentage-of-system-with-formal-risk-
assessment

Yes Yes

GRM Risk-control Percentage-of-system-with-tested-controls Yes Yes

LSC Location-control Country-level-anchoring Yes Yes

LSC
Personal-data-
privacy Consultation-ability

Yes Yes

LSC
Personal-data-
privacy Modification-ability

Yes Yes

LSC
Personal-data-
privacy Deletion-ability

Yes Yes

LSC
Personal-data-
privacy Timely-access

Yes Yes

DSI Data-disposal Data-deletion-quality-level Yes Yes

DSI Data-disposal Percentage-of-timely-effective-deletions Yes Yes

DSI
Data-leakage-
control Data-leakage-detection

Yes Yes

DSI
Data-leakage-
control Data-leakage-prevention

Yes Yes

DSI durability Storage-freshness Yes Yes

DSI durability Storage-irretrievability Yes Yes

DSI durability Percentage-durability Yes Yes

TVM

Vulnerability-
management-
quality Vulnerability-exposure-level

Yes Yes

TVM

Vulnerability-
management-
quality

Percentage-of-timely-vulnerability-
corrections

Yes Yes

TVM

Vulnerability-
management-
quality Percentage-of-timely-vulnerability-reports

Yes Yes

DCS integrity Authentication-feature-count Yes Yes

DCS integrity Tamper-evidence Yes Yes

DCS integrity Tamper-resistance Yes Yes

BCR availability Percentage-of-uptime Yes Yes

BCR availability Percentage-of-processed-request Yes Yes

BCR availability Percentage-of-timely-recoveries Yes Yes

BCR availability Mean-time-between-failure Yes Yes

BCR recovery Recovery-point-objective Yes Yes

BCR recovery Recovery-time-actual Yes Yes

BCR recovery Recovery-success-ratio Yes Yes

BCR Resource-control Elasticity-reserved-capacity Yes Yes

BCR Resource-control Percentage-of-timely-provisioning-request Yes Yes

BCR Resource-control Allocation-limitation Yes Yes

BCR Resource-control Denial-of-service-attack-resistance Yes Yes

CCC
Compliance-
control Percentage-of-compliant-devices

Yes Yes

CCC
Compliance-
control Percentage-of-compliant-software

Yes Yes

CCC
Configuration-
change-control

Percentage-of-timely-configuration-change-
notification

Yes Yes

Document name: CUMULUS Evaluation Report ɀ Project Results summarized for external Evaluators
Version: 1.0

Security: Public

Date 29/06/2015

Page 27/ 58

Property Certifiable

Domain Property name Monitoring Testing

CCC
Configuration-
change-control Configuration-change-reporting-capability

Yes Yes

Table 2 - List of Certifiable Properties in CSA Catalogue

However, beyond the security properties that we used as reference in CUMULUS, monitoring based
certification models can be used to automate certification based in traditional approaches as, for example,
Common Criteria. In the following section, we provide examples of how MBCMs could be used for this
purpose.

3.2.2. Examples of Monitoring Based Certification Models

CUMULUS MBCMs can be used to specify certification processes for generating certificates verifying
security properties in Common Criteria, aka Security Functional Requirements (SFR). To demonstrate this,
we use an example from the Protection Profile for Database Management Systems developed by Oracle
[DBMS PP, 2000], i.e., a Common Criteria profile developed for the certification of relational data base
management systems.

The SFR that we focus on in this profile is:
FIA_UID.1.2: The TSF shall require each DATABASE user to be successfully
identified before allowing any other TSF - mediated actions on behalf of that
DATABASE user.

The certification model for monitoring and certifying the above property consists of three assertions: two
assumptions and one monitoring rule.

The two assumptions in the MBCM are used to initialise and terminate a state indicating whether a user
is connected to the DBMS following successful authentication. This state is used to indicate whether the
ǳǎŜǊ άǎǳŎŎŜǎǎŦǳƭƭȅ ƛŘŜƴǘƛŦƛŜŘέ in the above SFR. The state is expressed by the relation Connected(

_thread - id, _user) . The meaning of the relation is that the user indicated by the variable _user has been
connected to the DBMS through the thread indicated by the variable _threat-id. The state /ƻƴƴŜŎǘŜŘόΧύ is
initiated when an event showing the successful connection of _user to the DBMS occurs. The assumption
that is used to initiate the state is expressed as1:
FIA_UID.1.2.A1

Happens (e(_eId, _thread - id, _host, REQ, o(_thread - id, _query - id, _queryType , _user),

_SRC), t1, R(t1, t1)) (_queryType = Connect) Ý

Initiates(e(_eId , _thread - id, _host, REQ, o(_thread - id, query - id, queryType , _user),
SRC), Connected(_thread - id, _user), t1)

The above assertion monitors events of the form o(_thread - id, _query - id, _queryType, _ user) .
When an event of this form occurs during the operation of the DBMS and the type of the query captured by
the event (i.e., _queryTypeύ ƛǎ ά/ƻƴƴŜŎǘέΣ ǘƘŜ ǎǘŀǘŜ /ƻƴƴŜŎǘŜŘόΧύ is initiated. The events o(_thread - id,

_query - id, _queryType, _ user) required in order to operate the certification model of this example are
captured during the operation of the DBMS to be certified and are passed to the CUMULUS framework by
an event translator that we have developed for this purpose (see section 6.2.2 for more details)2.

1 For readability purposes, we provide the specification of the assertion in the high level syntax of Event
Calculus. The specification of FIA_UID.1.2.A1 in MBCM for Assertions is given in Appendix A.

2
 In the experiment that we run to check the correctness and performance of this certification model in the case of the

MySQL server, these events were captured by an audit plugin developed by McAfee for the MySQL server in order to
capture all interactions with the server.

Document name: CUMULUS Evaluation Report ɀ Project Results summarized for external Evaluators
Version: 1.0

Security: Public

Date 29/06/2015

Page 28/ 58

The state /ƻƴƴŜŎǘŜŘόΧ) may also be terminated during the operation of a DBMS if a given user
disconnects from the DBMS. The assertion formula that captures such disconnection events and updates
the state /ƻƴƴŜŎǘŜŘόΧ) is expressed as follows:
FIA_UID.1.2 .A2

Happens (e(_eId, _thread - id, _host, REQ, o(_thread - id, _query - id, _queryType , _user),

_SRC), t1, R(t1, t1)) (_queryType = Quit)

HoldsAt(Connected(_thread - id, _user), t1) Ý
Terminates(e(_eId, _thread - id, _host, REQ, o(_thread - id, _query - id, _queryType ,
_user), _SRC), Connected("thread - id", "user"), t1)

According to FIA_UID.1.2.A2, the state /ƻƴƴŜŎǘŜŘόΧ) is terminated, wƘŜƴ ŀ άvǳƛǘέ ŜǾŜƴǘ ƻŎŎǳǊǎ ŦƻǊ ŀ ǳǎŜǊΣ
ǇǊƻǾƛŘŜŘ ǘƘŀǘ ŀǘ ǘƘŜ ǘƛƳŜ ǿƘŜƴ ǘƘŜ άvǳƛǘέ ŜǾŜƴǘ ǘƘŜ ǇŀǊǘƛŎǳƭŀǊ ǳǎŜǊ ƛǎ ŎƻƴƴŜŎǘŜŘΦ ¢Ƙƛǎ ƛs checked in the
formula by the HoldsAt(Connected(_thread - id, _user), t1) condition.

The monitoring rule (assertion) that is used to check if a DBMS satisfies FIA_UID.1.2 is:
FIA_UID.1.2.MR1

Happens (e(_eId, _thread - id, _host, REQ, o(_thread - id, _query - id, _queryType,

_user), _SRC), t1, R(t1, t1)) not (_queryType = Connect) Ý

HoldsAt(C onnected(_thread - id, _user), t)

¢ƘŜ ŀōƻǾŜ ŀǎǎŜǊǘƛƻƴ ƳƻƴƛǘƻǊǎ ƛŦ ŀǘ ǘƘŜ ǘƛƳŜ ǿƘŜƴ ŀ ǳǎŜǊ ŜȄŜŎǳǘŜǎ ǉǳŜǊƛŜǎΣ ƻǘƘŜǊ ǘƘŀƴ ά/ƻƴƴŜŎǘέ ǘȅǇŜ
queries, in the database (t1), he/she must have been successfully connected to the database.

¢ƘǳǎΣ ǘƘŜ ƳƻƴƛǘƻǊƛƴƎ ǊǳƭŜ ŎƘŜŎƪǎ ǘƘŀǘ ƛŦ ŀ ǉǳŜǊȅ ǘƘŀǘ ƛǎ ƴƻǘ ƻŦ ǘƘŜ ǘȅǇŜ ά/ƻƴƴŜŎǘέ ƘŀǇǇŜƴǎΣ ǘƘŜƴ the
fluent must hold, stating that the user has already established a connection to the database, through the
specific thread.

The life cycle model for the above model is shown in Figure 7. As shown in the figure, the life cycle
model has an initial state called Activated and the states Pre-Issued, Issued, Revoked and Ended (i.e., the
final state of the model). Moreover, there is one composite state, called Continuous Monitoring. According
ǘƻ ǘƘƛǎ ƭƛŦŜ ŎȅŎƭŜ ƳƻŘŜƭΣ ǘƘŜ ŦƛǊǎǘ ǎǘŀǘŜ ƛƴ ǘƘŜ ŎŜǊǘƛŦƛŎŀǘŜΩǎ ƭƛŦŜŎȅŎƭŜ ƛǎ ŎŀƭƭŜŘ Activated. Activated denotes the
activation of the certification process for generating a certificate for the security property specified in the
MBCM that incorporates the life cycle model. After being activated, the certificate moves to the composite
state ContinuousMonitoring. Whilst being at this state, the evidence required for the assessment of the
security property targeted for the certificate is continually gathered by the CUMULUS infrastructure. When
the accumulated evidence becomes sufficient according to the evidence sufficiency conditions, which are
specified in the MBCM, and there has been no violation of the assertion specifying the security property
(see condition assertion-satisfied), the certificate moves to the state Pre-Issued. Pre-Issued is a sub-state of
the composite state Issuing. Whilst being at Pre-Issued, the certification infrastructure will check if any
extra validity conditions for the certificate type are satisfied (see the action CheckValidityConditions within
the state Pre-Issued) and, if they are, the certificate will move to the state Issued. When the certificate
reaches the Issued state, it becomes available to authorised users of the CUMULUS infrastructure (e.g., the
TOC owner, the certification authority which produced the certificate using the CUMULUS infrastructure,
and any clients of TOC and/or the services that it provides) as indicated by the transition retrieveCertificate
in the life cycle model. For issued certificates, when the expiration date of the certificate is reached as
stated in the ExpirationCondition ƻŦ ǘƘŜ a./aΣ ǘƘŜ ŎŜǊǘƛŦƛŎŀǘŜ ǿƛƭƭ ƳƻǾŜ ōŀŎƪ ǘƻ ά5мέ ǎǘŀǘŜΣ ŀǎ ƛƴŘƛŎŀǘŜŘ ōȅ
the transition when(expiration-conditions). At this point the monitoring process will continue until sufficient
evidence is available again for issuing another instance of the same certificate. Finally, according to the life
cycle model of Figure 7, a certification authority may decide to revoke an issued certificate, as shown by
the transition when(CA revokes certificate) that moves the certificate to the state Revoke. Revocation
would entail the permanent cease of the existence of the certificate and the permanent stop of the
monitoring of the properties that could be certified by it, according to the model. The XML specification of
this life cycle model is given in Appendix A.

Document name: CUMULUS Evaluation Report ɀ Project Results summarized for external Evaluators
Version: 1.0

Security: Public

Date 29/06/2015

Page 29/ 58

Figure 7 - Monitoring-based CM: UML diagram of Life Cycle Model

3.3. Trusted Computing Based Certification Models

Trusted Computing based Certification Models (TC-based CMs) represent how a target of certification
(ToC), residing on a TC-enabled cloud platform, can be certified based on TC mechanisms, namely the TPM,
and the required hardware and software for that. The sole security property supported by the CUMULUS
TC certification is software integrity. The general category is integrity and subject of the property is the
software or application running on a cloud platform.

Given the nature of TC, the trust chain for software integrity measurement and validation is bottom-up,
starting with the trust on the TPM and motherboard hosting the TPM chip (i.e., the physical platform), and
building up the chain by measuring and reporting the integrity of the firmware and software upper in a
platform stack reaching the applications layer on the top. In that case, integrity of applications (software)
running on a platform (regardless if physical or virtual in case of cloud) is in function of the integrity state of
the underlying platform. Having said that, the actual and only security property supported by CUMULUS TC
certification approach is called software integrity bound to platform stateΦ ²Ŝ ǎŀȅ άōƻǳƴŘέ ōŜŎŀǳǎŜ ǘƘŜ
actual software integrity is assured based on the integrity of the underlying platform.

TC-based certification requires TPM virtualisation on the corresponding Cloud platform. There are three
main layers in a referenced cloud platform to be reflected by TC-based CMs.

¶ Physical Platform Layer. The bottom layer comprises the physical platform and associated to that
physical hardware TPM (pTPM) and physical Root of Trust for Measurement (pRTM). The pRTM is
responsible for measuring integrity of software (e.g., hypervisor) running on a physical platform
and reports ǘƘƻǎŜ ƳŜŀǎǳǊŜƳŜƴǘǎ ƛƴǘƻ Ǉ¢taΩǎ tƭŀǘŦƻǊƳ /ƻƴŦƛƎǳǊŀǘƛƻƴ wŜƎƛǎǘŜǊǎ όt/wǎύΦ

¶ Hypervisor Layer. Next layer in the cloud architecture is the software running on top of the physical
(hardware) platform, called Hypervisor or Virtual Machine Manager. Upon creation of a new VM,
the hypervisor creates also an instance of a virtual TPM (vTPM) associated to that VM and triggers
virtual RTM (vRTM), which in turn measures the first code execution of a VM and reports that to

Document name: CUMULUS Evaluation Report ɀ Project Results summarized for external Evaluators
Version: 1.0

Security: Public

Date 29/06/2015

Page 30/ 58

Ǿ¢taΩǎ t/wǎΦ ¢ƘŜ ƘȅǇŜǊǾƛǎƻǊ ƛǎ ƛƴ ŎƘŀǊƎŜ ƻŦ ŎǊŜŀtion and destruction of vTPM and vRTM instances
for each VM.

The vTPM is a software instance of TPM functionality associated to a single VM. The vTPM
component is defined as hardware and/or software realization of the functionality described in the
TPM specification. The vTPM component can be entirely realized as software, virtualizing the
functionality of physical TPM, such as non-volatile memory, PCRs, cryptographic engine, hash
engine, etc. The goal of the instantiated vRTM and vTPM is to make those appear the same as their
physical equivalents (pRTM, pTPM).

¶ Virtual Machines Layer. Next (top) layer of the cloud architecture is the layer where VMs reside.
VMs run guest operating systems and host end user services. Importantly, each VM runs an
attestation agent serving (remote) attestation requests from challengers by following a specific
attestation protocol, the same as in the case of a non-virtualised platform. The attestation agent in
a VM provides attestation evidences about the state of the VM, i.e. about the state of the ±aΩǎ
system platform and applications running on it, by using the vTPM assigned to that VM.

Deep attestation. There is a dedicated service on the hypervisor layer, called Deep Attestation Service used
to create attestation evidences about the state of the hypervisor. For example, after an attestation of a VM
has succeeded, a Remote Challenger might wish to attest the hypervisor below the VM to determine if it is
trustworthy enough to not modify the VM behaviour and attestation reporting. Because the hypervisor (the
layer below VMs) might also be operating on top of a virtualized platform the concept of iteratively
attesting each individual lower virtualization layer in order to establish the trustworthiness of a VM (and
applications runnƛƴƎ ƛƴ ǘƘŜ ±aύ ƛǎ ƪƴƻǿƴ ŀǎ ŀ άŘŜŜǇ ŀǘǘŜǎǘŀǘƛƻƴέΦ Lƴ ǘƘŀǘ ŎŀǎŜΣ ǘƘŜ ǊŜƳƻǘŜ ŎƘŀƭƭŜƴƎŜǊ Ƴŀȅ
need to repeatedly attest virtualization layers down until it reaches the bottom-most layer operating on
top of a physical trusted platform (with pTPM).

The attestation process underpins any CUMULUS TC certification process, i.e. we use attestation of the
ToC and its underling platform layers to certify integrity of a ToC. The outcome of such integrity attestation
is a TC-based certificate. Correspondingly, the attestatƛƻƴ ǇǊƻŎŜǎǎ ƛǎ ŀƭǎƻ ǳǎŜŘ ǘƻ ǾŀƭƛŘŀǘŜ ǘƘŜ ¢ƻ/Ωǎ ¢/-
ōŀǎŜŘ ŎŜǊǘƛŦƛŎŀǘŜ ŀƴŘ ŘŜǘŜǊƳƛƴŜ ƛŦ ǘƘŜ ŎǳǊǊŜƴǘ ¢ƻ/Ωǎ ƛƴǘŜƎǊƛǘȅ ǎǘŀǘŜ ƳŀǘŎƘŜǎ ǘƘŀǘ ŀǘ ǘƘŜ ǘƛƳŜ ǘƘŜ ¢ƻ/ ǿŀǎ
certified.

Target of integrity. An important aspect of TC-based CMs is the representation of the available TC
support by the underlying, to the ToC, platform and cloud infrastructure. In fact, such representation is
crucial to allow the ToC integrity to be properly measured and validated following the TC-specific bottom-
up chain of integrity measurements. To do so, we defined a specific data structure (artefact) as part of ToC
definition, called Target of Integrity (ToI). The role of ToI is to represent all necessary information about the
ToC and its underlying platform and cloud infrastructure layers down to a physical platform with a physical
TPM.

Other important and complementary artefacts to the ToI of TC-based CMs are the Evidence Collector
and Evidence Aggregator. An Evidence Collector is defined per each layer of the ToI, and its role is to
represent all necessary information about how software integrity of a given ToI layer is to be attested. An
Evidence Aggregator defines how to perform the complete ToI integrity attestation process starting top-
down from the top-level application components of a ToI (located in a VM) down through all layers to a
physical platform. In the following we show a fragment of a TC-based CM to illustrate the main TC
certification artefacts.

Example of TC-based CM artefacts (ATOS eHealth Application)
<CertificationModel xmlns="http://www.cumulus.org/tc-certification">
 <ToC Id="toc-atos-ehealth-app">
 <CloudLayer>SaaS</CloudLayer>
 <TocDescription>e-Health application provided by ATOS</TocDescription>
 <TocURI>http://ehealth.atos.net/services/e-health</TocURI>
 <ToI>

Document name: CUMULUS Evaluation Report ɀ Project Results summarized for external Evaluators
Version: 1.0

Security: Public

Date 29/06/2015

Page 31/ 58

 <VMLayer>
 <Application ID="vm-application">
 <Component>
 <NameID>cumulus:scenarios:e-health</NameID>
 <Release>1.0</Release>
 <ElementRef>file://${TOMCAT-HOME}/webapps/e-health/e-health-main.jsp</ElementRef>
 <ElementRef>file://${TOMCAT-HOME}/webapps/e-health/WEB-INF/lib/bcprov-jdk15on-150.jar</ElementRef>
 <ElementRef>file://${TOMCAT-HOME}/webapps/e-health/WEB-INF/config/e-health-config.xml</ElementRef>
 </Component>
 </Application>
 <Platform ID="vm-platform" TPMVersion="1.2" PlatformBindingType="Virtual" VirtualizedOnLayer="vlayer-01">
 <Component><NameID>apache:tomcat</NameID><Release>8.0.9</Release></Component>
 <Component><NameID>oracle:jre</NameID><Release>jre-7u60-linux-x64</Release></Component>
 <Component><NameID>canonical:ubuntu</NameID><Release>14.04 LTS</Release></Component>
 </Platform>
 </VMLayer>
 <VirtualizationLayer ID="vlayer-01" TPMVersion="1.2" PlatformBindingType="Physical">
 <Component><NameID>vmware:vsphere-hypervisor</NameID><Release>ESXi 5.1.0</Release></Component>
 </VirtualizationLayer>
 <PhysicalLayer>
 <PhysicalPlatform ID="physicalplatform-01">
 <TPM><NameID>infineon:tpm-chipset</NameID><Release>SLB 9635 TT 1.2</Release></TPM>
 </PhysicalPlatform>
 </PhysicalLayer>
 </ToI>
 </ToC>
 <SecurityProperty><sProperty class="AIS:integrity:software-integrity-bound-to-platform-state"/></SecurityProperty>
 <EvidenceCollector ToILayerRef="vm-application">
 <CollectorInfo NameID="cumulus:cm:tc:collector:id:tcmanager"/>
 <IntegrityMeasurement IntegrityMethod="cumulus:cm:tc:integritymethod:linked-timestamping"
IntegrityAlgRef="cumulus:cm:tc:integrityalgref:sha1" PCRNumber="23"/>
 </EvidenceCollector>
 <EvidenceCollector ToILayerRef="vm-platform">
 <CollectorInfo NameID="cumulus:cm:tc:collector:id:vtpm"/>
 <TPMQuote><PCRNumber>0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15</PCRNumber></TPMQuote>
 </EvidenceCollector>
 <EvidenceCollector ToILayerRef="vlayer-01">
 <CollectorInfo NameID="cumulus:cm:tc:collector:id:ptpm"/>
 <TPMQuote><PCRNumber>0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15</PCRNumber></TPMQuote>
 </EvidenceCollector>
 <EvidenceAggregator>
 <AggregatorInfo NameID="cumulus:cm:tc:collector:id:tcmanager"/>
 <ToIAttestation>
 <ToIAndPlatformIntegrityAttestation AttestationServiceURI="http://ehealth.atos.net/services/attestation"/>
 <VirtualizationLayerIntegrityAttestation VirtualizationLayerRef="vlayer-01"
DeepAttestationServiceURI="http://192.168.35.211:8080/tc-services/deepattestation" />
 </ToIAttestation>
 </EvidenceAggregator>
</CertificationModel>

3.4. Incremental & Multi -Layer Certification Models

3.4.1. Multi -Layer certification

CUMULUS aims to provide a certification approach that addresses the multi-layer structure of cloud
environments. The cloud paradigm in fact offers a powerful approach to the provision of infrastructure,
platform, and software services that, on one side, increases performance, flexibility, and effectiveness,

Document name: CUMULUS Evaluation Report ɀ Project Results summarized for external Evaluators
Version: 1.0

Security: Public

Date 29/06/2015

Page 32/ 58

while, on the other side, raises significant concerns regarding security at each cloud stack layer. In this
context, CUMULUS is developing an integrated framework of models and processes that support the
certification of security properties that insist on multiple levels of the cloud stack. Our multi-layer approach
is based on a single CM that specifies the security property to be certified on a given ToC involving different
levels of the cloud stack (e.g., Service-Platform or Service-Infrastructure, Service-Platform-Infrastructure).

This approach works under the assumption that there are no access restrictions to the above mechanisms
for a certification authority/accredited Laboratory. Credentials and configurations needed to access the
mechanisms are specified in each type specific part of the ToC (e.g., ToT for the Test-based CM). Each type-
specific evidence collectors is therefore tailored to the layer where the corresponding mechanism to be
verified is deployed (e.g., it runs on a specific cloud stack for verifying confidentiality at rest, it runs on
external and internal facilities for verifying confidentiality in transit). At this level, any restrictions on
evidence collection at different layers should be covered using different deployment strategies of the
collectors (mainly for Test-based collectors) or gaining the correct access rights (mainly for monitoring
event captors). The basic Multi-[ŀȅŜǊ ŎŜǊǘƛŦƛŎŀǘƛƻƴ όŀƪŀ άMulti-Layer certification from scratchέύ assumes a
scenario where all mechanisms specified in the CM refers to security mechanisms that are not certified.
The certification authority starts a complete certification process (similar to the one used for single-layer
certification) evaluating relevant security mechanisms, to the aim of certifying the security property target
of the Multi-Layer certification. We would like to remark that Multi-Layer is a cross characteristic of any
type of Advanced models. For instance mechanisms at different layers can be verified using different type-
specific CMs (Hybrid-Multi-Layer), or via composition of already existing certificates bound to different
layers (composition-multilayer), or a mixture of the two.
In the following, we first present an example of Test-based Multi-Layer CM for property data leakage
prevention. We then discuss the peculiarities of TC-based Multi-Layer model.

3.4.2. An Example of Multi -Layer certification : Data Leakage prevention

Let us consider a certification procesǎ ŀƛƳƛƴƎ ǘƻ ŎŜǊǘƛŦȅ ǇǊƻǇŜǊǘȅ άŘŀǘŀ ƭŜŀƪŀƎŜ ǇǊŜǾŜƴǘƛƻƴέ ŦƻǊ ŀ ƎŜƴŜǊƛŎ
service deployed on top of a IaaS solution. Data leakage prevention requires a Multi-Layer certification,
where SaaS communications must be encrypted and IaaS data must be stored in an encrypted storage. In
other words, the Multi-Layer certification must first evaluate the mechanism implementing encrypted
communications and then evaluate the mechanism implementing the encrypted storage.

More concretely, let us consider the Test-based Multi-Layer certification aimed at certifying property
ά5{LΥŘŀǘŀ-leakage-control:data-leakage-ǇǊŜǾŜƴǘƛƻƴέ ŦƻǊ ²Ŝ[ƛƎƘǘ CUMULUS pilot application, running in a
VM deployed on top of OpenStack. In this case, the property cannot be satisfied by just analysing the VM
itself, while it is mandatory to investigate its deployment environment (i.e., OpenStack deployment). More
in detail, ƛŦ ǿŜ ǿŀƴǘ ǘƻ ŎŜǊǘƛŦȅ ǇǊƻǇŜǊǘȅ ά5{LΥŘŀǘŀ-leakage-control:data-leakage-ǇǊŜǾŜƴǘƛƻƴέΣ ǿŜ Ƴǳǎǘ
consider confidentiality of data in transfer and at rest. Confidentiality of data in transit is guaranteed by the
exposure of the service with a SSL/TSL communication, while confidentiality at rest is left to the storage
features of OpenStack. Hence, the injected test cases must address both the service inside the Welight VM
and the services exposed by the IaaS hosting the VM (OpenStack). In the following box, we highlight the
TOC parts of a Multi-Layer Certification Model, where the different cloud layers are described.

Example of parts of a Multi-Layer Certification Model
<?xml version ="1.0" encoding ="UTF- 8" ?>

<test:testBasedCertifcationModel

 xmlns:sch ="http://www.ascc.net/xml/schematron"

xmlns:ec ="http://slasoi.org/monitoring/citymonitor/xmlrule"

 xmlns:sla ="http://www.slaatsoi.eu/slamodel" xmlns:jxb ="http://java.sun.com/xml/ns/jaxb"

 xmlns:cm ="http://www.cumulus.org/certificate/model"

xmlns:test ="http: //www.cumulus.org/certificate/model/test"

 xmlns:xsi ="http://www.w3.org/2001/XMLSchema - instance"

 xsi:schemaLocation ="http://www.cumulus.org/certificate/model/test

Document name: CUMULUS Evaluation Report ɀ Project Results summarized for external Evaluators
Version: 1.0

Security: Public

Date 29/06/2015

Page 33/ 58

file:/Users/iridium/Jobs/testManager/CumulusTestManager/XML_Repository/testbasedCM.xsd" >

 <CertificationModelID >cumulus:cm:id:test:180302 </ CertificationModelID >

[éé..]

 <ToC Id ="Welight - Service" >

 <CloudLayer >Infrastructure </ CloudLayer >

 <CloudLayer >Service </ CloudLayer >

 <ConcreteToc >Wellness Welight service </ ConcreteToc >

 <TocDescription >Wellness light service web service </ TocDescription >

 <TocURI >https://cumulus - project.sytes.net:11080 </ TocURI >

 <ToTs>

 <ToT collectorRefID ="cFSecnrypted" >

 <Interface stateRef ="*" >

 <type >Cinder Block Storage Service </ type >

 <call >openstackFSenc </ call >

 </ Interface >

 </ ToT>

 <ToT collectorRefID ="cChannel" >

 <Interface stateRef ="*" >

 <type >Welight web interface </ type >

 <call >https </ call >

 </ Interface >

 </ ToT>

 </ ToTs>

 </ ToC>

3.4.3. Incremental certification

To support the dynamics of the cloud, the certification process must be able to dynamically certify and
constantly verify the validity of a certificate in the production environment. An Incremental
certification process is aimed at providing such ability, avoiding as much as possible time-consuming
re-certification. This can be achieved by adapting the process to cloud events (e.g., service migration),
changes of the mechanisms in the ToC, and configuration changes on custom or cloud stack
mechanisms, while proving a comparable level of assurance for the ToC.

Monitoring -based certification is Incremental by definition, as it continuously checks for a property to
be valid. In particular, the deployment on a different stack is automatically achieved by moving also
the event captors in the new stack.3 TC-based certification is based on discrete evidence collection due
to the nature of TC concept and TPM technology. As such, Incremental certification models are not
considered by TC-based certification. It is precisely the goal of TC-based certification to provide means
to assure that a service/software integrity state collected at a given point in time (discrete evidence
collection) remains the same over a time period with strong assurance about cloud service state in
function of its underlying platform integrity.

In the following we describe a Test-based Incremental certification model that relies on CM Template
and CM Instance.

Certification Model (CM) Template is an XML document and specifies abstract configurations needed
to certify a given class of ToCs for a given property. CM Template provides the methodology and some
guarantees on how the ToC will be evaluated and which activities will be executed for the specified
property. It contains the specification of a class of ToCs, and is produced and signed even before the
service under certification is designed.

Certification Model (CM) Instance, already described in Section 3.1, is an instance of the CM Template
including specific information on configurations and evaluation activities. It includes a reference to the
original template, the security property, the specification of the ToC and its components under

3
 We note that the Monitoring-based approach is ready to support the Incremental process described here

for Test-based CM.

Document name: CUMULUS Evaluation Report ɀ Project Results summarized for external Evaluators
Version: 1.0

Security: Public

Date 29/06/2015

Page 34/ 58

evaluation, the evaluation activities to be done on the ToC and conditions for their execution,
conditions on the validity of the produced evidence and on certificate issuance, and a life cycle
describing how to continuously evaluate the validity of a certificate. It is produced and signed before
service deployment.

3.4.4. Test-based Incremental certification

We consider two main Incremental scenarios as follows:

i) CM Instance adaptation permitting to react to new versions of a service, platform or
infrastructure, or any changes in the configurations (e.g., due to elastic scaling, migration)
at all cloud layers specified in the ToC.

ii) CM Template adaptation permitting to adapt to new conditions and requirements for the
validity of a property. For instance, a bug in a mechanism/algorithm is found or a new
attack discovered. We note that any change on CMT also triggers an adaptation process on
CMI.

In both scenarios the Incremental certification process provides the ability to re-execute (part of) the
certification process, according to changes in the CM Template, the CM Instance, and the system
implementation. We remark that any adaptation produced by the Incremental process must satisfy the
CM Instance consistency.

In the following we denoted as #-4ȭ any possible adaptation of a given CMT, and #-)ȭ any possible
adaptation of a given CMI.

CM INSTANCE ADAPTATION

CM Instance adaptation focuses on maximizing the reuse of available evidence; it follows four different
approaches:

¶ Partial re-evaluation: where evidence is still sufficient for a successful certification. The adapted CM
Instance /aLΩ is verified positively against CM Template CMT, but it has minor differences with the
original CM Instance CMI. Some of the testing flows in /aLΩ are updated with respect to the
corresponding flows in CMI, requiring one of the following actions:

i) re-execution of a subset of test cases affected by cloud events,
ii) execution of additional test cases reflecting additional features introduced in an existing

testing flow (not impacting on the flow sequence),
iii) all test cases executed on the modified flow must be re-executed due to changes in a

mechanism under test.

We note that partial re-evaluation does not require certificate authority intervention and can be

executed at runtime by our Incremental certification process according to /aLΩ.

We consider the example in Section 3.4.2 focusing on a VM running on top of OpenStack that
requires a Multi-Layer certification. In case of VM migration, all evidence and configurations related
to the service running inside the VM are still valid because the service is kept unchanged. Instead,
since migration causes a change in the IaaS, IaaS functionalities must be re-evaluated. This means
that all test cases addressed to the IaaS must be re-executed in the new environment.

Figure 38 shows the above example, where at time t0 the Welight VM was deployed on a Cloud
Service Provider A, while at time t1 it migrates to Cloud Service Provider B. The blue lines refer to the
first certification process at time t0 when test cChannel was injected to the Welight VM and
cFsEncryption to the Cloud Provider; the orange lines refer to the certification process at time t1
when the injected tests are addressed to the VM and to the new Cloud Service Provider B. The
ŘƻǘǘŜŘ ƭƛƴŜ ƘƛƎƘƭƛƎƘǘǎ ǘƘŜ ƻƴƭȅ ŎƘŀƴƎŜ ƛƴ /aLΩ όǘƛƳŜ ǘ1) from the original CMI (time t0): the fact that
the test process is still valid, but it must be configured in order to consider the new CSP

Document name: CUMULUS Evaluation Report ɀ Project Results summarized for external Evaluators
Version: 1.0

Security: Public

Date 29/06/2015

Page 35/ 58

configuration.

FIGURE 4 ς PARTIAL RE-EVALUATION IN CASE OF VM MIGRATION

Table TB3 shows a comparison between the CM (a part of it) before and after the migration. The
changes are highlighted in bold..

CMI t0 /aƛΩ ǘ1
 [éé]

<Collector Descriptor ="check encryption for cinder"

Id ="cFSecnrypted"

 isStatic ="false" toDeploy ="true" >

 é.

 <TestCase >

 <ID >1</ ID >

 <Description >FILE SYSTEM

ENCRYPTION</ Description >

 <TestInstance

Operation ="Configuration" >

 <Input >service=cinder </ Input >

 </ TestInstance >

 <TestInstance

Operation ="OpenStackConfig" >

 <Input >OS_AUTH_URL=http://172.25.27.69:5000

/v2.0 OS_USERNAME=admin

 OS_PASSWORD=cumulus.admin

OS_TENANT_NAME=Project1

 OS_REGION_NAME=regionOne</ Input >

 </ TestInstance >

 <TestInstance

Operation =" DeployStorage" >

 <Input >storagename=volume1

</ Input ></ TestInstance >

 </ TestCase >

 é

</ Collector>

 [éé]

<Collector Descriptor ="check encryption for cinder"

Id ="cFSecnrypted"

 isStatic ="false" toDeploy ="true" >

 é.

 <TestCase >

 <ID >1</ ID >

 <Description >FILE SYSTEM

ENCRYPTION</ Description >

 <TestInstance

Operation ="Configuration" >

 <Input >service=cinder </ Input >

 </ TestInstance >

 <TestInstance

Operation ="OpenStackConfig" >

 <Input >OS_AUTH_URL=http://192.168.1.1:5000/

v2.0 OS_USERNAME=welight

 OS_PASSWORD=pass1234

OS_TENANT_NAME=ProjectWeLight

 OS_REGION_NAME=regionOne</ Input >

 </ TestInstance >

 <TestInstance

Operation ="DeployStorage" >

 <Input >storagename=volumeCSPB

</ Input ></ TestInstance >

 </ TestCase >

 é

</ Collector >

Table TB3 - Comparison between CMs before and after VM migration

Clearly, the only changes include the uri, the volume id, and all the references to the new IaaS.

¶ Partial re-certification: where evidence is no more sufficient but not contradictory, and the
certificate status is moved to suspended. The adapted CM Instance /aLΩ is not verified positively
ŀƎŀƛƴǎǘ /a ¢ŜƳǇƭŀǘŜ /a¢Σ ōǳǘ ƛǘ ŜȄƛǎǘ ŀ /a¢Ω ǿƛǘƘ ǿƘƛŎƘ ǘƘŜ ƳŀǘŎƘƛƴƎ ƛǎ ǇƻǎǎƛōƭŜΦ ! ǊŜ-certification
process is instantiated for new execution flows of /aLΩ that do not exist in the original CMI. The
accredited lab then evaluates only those additional flows rather than implementing a complete re-
certification. It generates and executes new test cases to collect the evidence needed to award a
certificate for a new property p' according to the new instance /aLΩ. With the new /aLΩ the evidence

Document name: CUMULUS Evaluation Report ɀ Project Results summarized for external Evaluators
Version: 1.0

Security: Public

Date 29/06/2015

Page 36/ 58

becomes sufficient again and the certificate status is moved from suspended back to issued.
A lightweight degeneration of the general case of partial re-certification that do not require new
testing activities but a little involvement of the certification authority is obtained via Certificate
upgrade and downgrade.

i) The certificate downgrade aims at finding a suitable template for the adapted CM Instance
/aLΩ, such that a weaker property is still preserved for the system referring to it. Templates
for certificate downgrade are defined by the certification authority, making the accredited
lab just responsible to check if /aLΩ is consistent with one of the alternative templates
/a¢Ω. In case such /a¢Ω is found, the original certificate C is downgraded to /Ω.

ii) The certificate upgrade process is the inverse of the downgrade process and is only
applicable to a downgraded certificate /Ω. It aims to release an upgraded certificate (i.e.,
with stronger property and/or evidence) up to the original certificate C.

Downgrade and upgrade processes permits to deal with some classes of cloud configurations that
change very rapidly (e.g., number of replicas supporting High Availability).

¶ Full re-certification: where evidence is contradictory. It is applied in case changes to CMI cannot be
managed according to one of the above approaches. We note that full re-certification is required
only in cases of dramatic changes where neither certificate downgrade nor certificate upgrade is
possible. An example could be the release of a new set of APIs for a given TOC; the changes
significantly target all the cloud structure and a completely new CMI is required.

CM TEMPLATE ADAPTATION

CM Template adaptation focuses on Incremental updates of the certification methodology.

It is driven by the certification authority that releases a refined CM Template /a¢Ω of CMT, and can trigger
a CM Instance adaptation process for all instances CMI referring to CMT.

The initial CM Template CMT is in fact defined by the certification authority for a given property and class
of ToC. However, upon new conditions and requirements for the validity of the property are discovered,
the certification authority may define an adapted /a¢Ω that is checked against CMI originally showing
consistency with CMT. The Incremental process proceeds as follows:

i) if the actual CMI ƛǎ ǾŜǊƛŦƛŜŘ ŀƎŀƛƴǎǘ ǘƘŜ ŀŘŀǇǘŜŘ /a¢ΩΣ ǘƘŜ Řifferences between the two
templates #-4ȭ and CMT are used to identify those parts of CMI that need to be re-
evaluated. A partial re-evaluation is applied for all relevant CMI as for CM Instance
adaptation.

ii) Otherwise the system under certification must be adapted and a new instance #-)ȭȟ
which is verified against #-4ȭ is defined. Partial re-certification must then be executed
on the portion of #-)ȭ that has been changed. .

CM Template adaptation can be considered as a certification-aware fast-patching approach. As an example,
suppose that United States Computer Emergency Readiness (US-Cert4) identifies a new vulnerability for a
given ToC, which calls for CMT modification. Such modification triggers a top-down adaptation process, and
all certificates referring to affected templates become SUSPENDED. A service owner must then adapt its
system and corresponding instance CMI to maintain the certificate.

Figure 39 describes an example of Template Adaptation as follows: i) at time t0 a CMT was created by a
Certification Authority for the certification of a given property; ii) at time t1 an Accredited Lab defines CMI
that is based on CMT. CMI is valid until the Certification Authority releases at time t2 a new Certification
aƻŘŜƭ ¢ŜƳǇƭŀǘŜΣ /a¢ΩΦ {ƛƴŎŜ ǘƘŜǊŜ ƛǎ ŀ ƴŜǿ /a ¢ŜƳǇƭŀǘŜ ŀƭƭ ǘƘŜ ŎŜǊǘƛŦƛŎŀǘŜǎ ōǳƛƭǘ ǳǇƻƴ ǘƘŜ /aLǎ ŘŜǊƛǾŜŘ ōȅ

4
 See https://www.us-cert.gov/

Document name: CUMULUS Evaluation Report ɀ Project Results summarized for external Evaluators
Version: 1.0

Security: Public

Date 29/06/2015

Page 37/ 58

ǘƘŜ ƻƭŘ /a¢ ōŜŎƻƳŜ ǎǳǎǇŜƴŘŜŘ ǳƴǘƛƭ ǘƘŜƛǊ /aL ǿƛƭƭ ōŜ ǳǇŘŀǘŜŘ ŦƻƭƭƻǿƛƴƎ ǘƘŜ ƴŜǿ /a¢ΩΦ

FIGURE 5 - CM TEMPLATES AND INSTANCE TIMELINE FOR AN ADAPTATION CASE

3.5. Hybrid Certification Models

3.5.1. Overview of hybrid certification models

In CUMULUS, we are using dynamic forms of security assessment, notably dynamic testing or continuous
monitoring, to overcome some of the limitations of traditional security certification and audits (e.g., to
produce machine readable certificates incorporating dynamically collected evidence). However, there are
cases monitoring and testing in isolation cannot provide an adequate or required level of assurance.
Testing, for instance, may be insufficient for transactional services, as it is normally performed through a
special testing (as opposed to the operational) service interface. Monitoring based certification may also be
insufficient if there is conflicting or inconclusive evidence in monitoring data; such data may, for example,
not cover all traces of system events that should be seen to assess a property.

To overcome such problems, we have also developed a hybrid approach for certifying cloud service
security, which combines both monitoring and testing evidence. The key concept underpinning a hybrid
certification model is to cross-check evidence regarding a security property that has been gathered from
testing and monitoring and, provided that there is no conflict within it, to combine it providing assurance for
properties. Consider, for example, a scenario where the property to be certified is cloud service availability.
If availability is measured as the percentage of the calls to service operations for which a response was
produced with a given time period d, a monitoring check should verify exactly this condition. However, the
trace of service calls that has been examined by the monitoring process might not cover all the operations in
the service interface or the expected peak workload periods of the underlying infrastructure. In such cases,
before issuing a certificate for service availability, it would be necessary to test any of the above service
usage conditions that have not been covered yet. The combination of monitoring and testing can take place
in two basic modes:

(1) The dependent mode ς In this mode, a security property is assessed for a TOC by a primary form
of assessment (monitoring or testing) which triggers the other (subordinate) form in order to
confirm and/or complete the evidence required for the assessment.

(2) The independent mode ς In this mode, a security property is assessed for a TOC by both
monitoring and testing independently without any of these assessments being triggered by

Document name: CUMULUS Evaluation Report ɀ Project Results summarized for external Evaluators
Version: 1.0

Security: Public

Date 29/06/2015

Page 38/ 58

outcomes of the other. Then at specific points defined by the evidence sufficiency conditions of
the certification model the two bodies of evidence are correlated and cross-checked to
complete the hybrid assessment.

Beyond the elements of certification models that were overviewed in previous sections, a hybrid
certification model should also define: (a) the mode of hybrid certification; (b) the way of correlating
monitoring and testing evidence; (c) conditions for characterising these types of evidence as conflicting,
and (d) the way in which a final overall assessment of the property can be generated based on both types
of evidence.

In the following, we give examples of dependent hybrid certification models of both modes and
formalise them using them the assertions used for monitoring based certification models. Independent
certification models are not covered in this report as they are the subject of on-going work.

3.5.2. Examples of hybrid certification models

Our example of hybrid certification models shows the use of a hybrid approach in certifying data integrity-
at-rest, i.e., a property expressing the ability to detect and report any alteration of stored data in a target of
certification (TOC).

A monitoring based certification model for this property could be specified using the following
monitoring rule (the specification of this rule, assumes the following agents and variables denoting them:
service consumers (_sc), target of certification (_TOC), authentication infrastructure (_AI), certification
authority (_CA)):

AIS:Data - alteration - detection :R1

Happens(e(_e1,_sc,_TOC,REQ,_updOp(_cred,_data,_auth),_TOC),t1,[t1,t1]) ^
Happens(e(_e2,_TOC,_AI,RES,_updOp(_cred,_data,_vCode),_TOC),t2,[t1,t1+d1]) ^

ƽʍÖ#ÏÄÅ ˯ .ÉÌƾ Ý
Happens(e(_e3,_TOC,_A,REQ,_notifO(_cred,_data,_auth,_h),_TOC),t3,[t2,t2+d2])

According to this rule, when a call of an update operation in a _TOC is detected at some time point t1 (see
event Happens(e(_e1,_sc,_TOC,REQ,_updOp(_cred,_data,_auth),_TOC),t1,[t1,t1])) and a response to this
call occurs after it (see event Happens(e(_e2 ,_TOC, _AI, RES,_updOp(_cred,
_data,_verCode),_TOC),t2,[t1,t2+d1])) indicating that the request has been granted (see condition (_vCode
ґ bƛƭύ in the rule), the monitor should also check for the existence of another event showing the call of an
operation in some authorisation agent _A to notify the receipt and execution of the update request (see
Happens(e(_e3,_TOC,_CA, REQ,_notifO(_cred,_data,_auth,_h),_TOC),t3,[t2,t2+d2]))5. The above model has
two limitations in providing assurance for the integrity-at-rest property: (1) it cannot capture updates of
data that might have been carried out without using the update interface assumed of _TOC (i.e.,
_updOp(_cred,_data,_vCode)), and (2) it cannot check that the operation _updOp has checked
authorisation rights before updating data.

A hybrid model could be used in this case to overcome partially the first of these limitations. More
specifically, a hybrid model in this case could be based on periodic testing to detect if stored data have been
modified and monitor the periods between the tests that revealed data modifications to check if appropriate
notifications have also been sent. Data modifications could be detected by obtaining the hash value of the
relevant data file in the TOC periodically. Then, if across the execution of two consecutive tests, the last
retrieved hash value of the file is different from the previous hash value, a data modification action can be
deduced. In parallel with the execution of this periodic test, the hybrid model will also monitor the execution
of notification operations. Hence, when a data modification action is detected by two consecutive tests, the

5
 Note that the operation signatures used in the rule may change depending on _TOC without affecting the generality of

the rule.

Document name: CUMULUS Evaluation Report ɀ Project Results summarized for external Evaluators
Version: 1.0

Security: Public

Date 29/06/2015

Page 39/ 58

hybrid model could also check whether a correlated notification operation has been executed within the
period between the tests.

This hybrid model can be expressed using the following monitoring rule and assumption:

AIS:Data - alteration - detection :R2

Happens(e(_e1,_CA,_TOC,EXC(Tper), _getHash(_TOC,_file,_h1),_CA), t1, [t1,t1]) ^

(ÏÌÄÓ!Ôƽ,ÁÓÔ(ÁÓÈƽʍÆÉÌÅƗʍÈʧƗÔʧƾƗÔʦƾ ʉ ƽʍÈʦ ˯ ʍÈʧƾ Ý
Happens(e(_e3,_TOC,_CA,REQ,_notifO(_cred,_data, _auth,_h1),_TOC),t3,[t2,t1])

AIS:Data - alteration - detection :A1 :

Happens(e(_e1,_CA,_TOC,REQ, _getHash(_TOC,_file,_h1),_TOC),t1,[t1,t1]) ^

(ÏÌÄÓ!Ôƽ,ÁÓÔ(ÁÓÈƽʍÆÉÌÅƗʍÈʧƗÔʧƾƗÔʦƾ ʉ ƽʍÈʦ ˯ ʍÈʧ) Ý
Terminates(_e1,LastHash(_file,_h2,t2) ,t1) ^ Initiates(_e1,LastHash(_file,_h1,t1) ,t1)

AIS:Data-alteration-detection:R2 ƛǎ ŀ άƘȅōǊƛŘέ ǊǳƭŜ ŀǎ ƛǘ ƛƴŎƭǳŘŜǎ ƴƻǊƳŀƭ ƳƻƴƛǘƻǊƛƴƎ ŜǾŜƴǘǎ όƛΦŜΦΣ REQ and
RES events) and events that trigger the execution of tests (i.e., EXC(Tper) events). The rule expresses a
hybrid dependent mode model where evidence arising from testing triggers the acquisition of monitoring
evidence. Hence, testing is the primary form of assessment. In particular, the rule forces the execution of
the event Happens(e(_e1, _CA, _TOC, EXC(Tper), _getHash(_TOC, _file,_h1),_TOC), t1,[t1,t1]) periodically
every Tper time units to invoke the operation _getHash in the testing interface of _TOC and obtain the
current hash value (_h1) of the data file (_file) of _TOC. If this value is different from the hash value
recorded by a previous test at some t2 (i.e., the value recorded in the state condition
LastHash(_file,_h2,t2), rule R2 checks if an update notification has also occurred between t2 and t1, as
expressed by the monitoring event
Happens(e(_e3,_TOC,_A,REQ,_notifO(_cred,_data,_auth,_h1),_TOC),t3,[t2,t1]). The hybrid model uses also
a monitoring assumption (i.e., A1). This assumption is used in the model to update the hash value recorded
in the state condition LastHash, if a test retrieves a hash value that is different from the last recorded one.

Although the above model can capture data updates that have taken place without the invocation of the
file-updating interface, it cannot guarantee that it can capture all possible updates that might have taken
place. In particular, it won't be able to detect if more than one update have taken place between two
consecutive executions of the periodic test. Hence, it addresses the first of the limitations of the monitoring
problem (i.e., limitation (1)) only partially.

To address the second limitation of the monitoring model (i.e., limitation (2)), it is possible to construct a
different hybrid model. This model could rely on testing to ensure that every time that an agent that
requests a data alteration, it has the authorisation right to do the requested alteration. This model can be
expressed by the monitoring rule below:

AIS:Data - alteration - detection :R3

Happens(e(_e1,_sc,_TOC,REQ,_updOp(_cred,_data, _auth),_TOC),t1,[t1, t1]) ^
Happens(e(_e2,_TOC,_AI,RES,_updOp(_cred,_data,_vCode1),_TOC),t2,[t1,t1+d1]) ^

ƽʍÖ#ÏÄÅʦ ˯ .ÉÌƾ Ý
Happens(e(_e3,_CA,_AI,EXC,_authorO(_cred,_auth,_vCode2),_TOC),t3,[t2,t2+d2])^
ƽʍÖ#ÏÄÅʧ˯.ÉÌƾ

Rule AIS:Data-alteration-detection:R3 monitors requests for updates of _TOC data through its normal
updating interface. However, for every such request that is granted by _TOC, it requests the execution of a
test to check if the entity that requested the update had indeed the authorisation to update data. This is
expressed by the EXC event
Happens(e(_e3,_CA,_AI,EXC,_authorO(_cred,_auth,_verCode2),_TOC),t3,[t2,t2+d2])) and the condition
ψǾŜǊ/ƻŘŜн ґ bƛƭ. In R3, the monitoring evidence triggers the execution of tests. Hence, the rule expresses a
dependent hybrid model where monitoring is the primary form of assessment.

Document name: CUMULUS Evaluation Report ɀ Project Results summarized for external Evaluators
Version: 1.0

Security: Public

Date 29/06/2015

Page 40/ 58

4. Assurance

The ultimate objective of a security certification process should be providing the user of a certified system
with some kind of guarantee that the system holds the claimed security properties. For a given case, these
guarantees depend on both the given reference criteria, system, security properties, and process, including
the entities involved in it. The amount of guarantees which can be associated to a given certification
process is, in some cases, used as a figure of merit (it can provide a way to compare certification
criteria/processes and/or certified products with each other and/or with user security
requirements/policies). In practice, the said guarantees are referred to as assurance. It is useful to have a
preliminary look at some aspects of the concept of assurance in Common Criteria.

Common Criteria define a scale of assurance levels where each level corresponds to a defined set of
kinds of evaluation activities. In some sense, each kind of evaluation activity contributes to the assurance
level. Looking at testing activities is here particularly significant. Essentially, testing activities in Common
Criteria are separated into functional and penetration testing. How these activities contribute to the
assurance is defined by specific metrics. Functional testing is qualified by a measure of the extent at which
the test cases stimulated both the system interfaces (in terms of fraction of interfaces and fraction of
possible inputs per interface, and globally referred to as test coverage) and the layered design components
(globally referred to as test depth). Penetration testing is qualified by a measure of the cost of exploiting a
system vulnerability (in terms of required time, expertise, system knowledge, system access, and
equipment, and globally referred to as attack potential).

CUMULUS leaves the issuers of certification models (at any of the considered abstraction levels, i.e.
Certification Model (CM), Certification Model Template (CMT), and Certification Model Instance (CMI)) with
maximal degree of freedom about how to represent (and measure) assurance. At the same time, CUMULUS
takes into account the concept of assurance as developed in Common Criteria, as it readily appears by
looking at the certification models developed for test based certification approach. In fact, these
certification models explicitly consider (and provide examples for) metrics for functional and penetration
tests to be used. These metrics can contribute the evaluation of the assurance associated to a test based
certification model (even though evaluation rules are not currently specified).

Regarding the concept of assurance, issuers/users of certification models could raise questions such as

¶ Can the assurance associated to a certification model be enforced by a certification model of a
higher abstraction level? How?

¶ Can the assurance associated to a certification model (at any abstraction level) be recognized and
compared with given requirements? How?

¶ Can two different certification models (at any abstraction level) be compared to each other for
assurance? How?

We try to answer these questions for the test based certification models by restricting to the assurance
corresponding to test specification. For the first question, we observe that, by using suitable metrics (see
before) and specifying suitable values for these, the CM/CMT issuer could explicitly express the
requirements for consistency for the functional/penetration tests to be specified in a CMT/CMI, thus, in a
sense, enforcing the (test contribution to) assurance in these models. An alternative could be to explicitly
refer, in the CM/CMT, to lists of functional/penetration tests where to select from for the specification of a
consistent CMT/CMI. As for the second question, we notice that, by using suitable metrics (see before) the
CM/CMT/CMI issuer could explicitly qualify the functional/penetration tests and thus, in a sense, allowing
the recognition of the intended contribution of test activities to assurance. Once recognized, this
contribution could be easily compared with CM/CMT/CMI user requirements at least in the (favourable)
case where the user requirements were expressed (directly or by exploiting some kind of equivalence) in
terms of the metrics adopted by the CM/CMT/CMI issuer. We also notice that in the general (unfavourable)

Document name: CUMULUS Evaluation Report ɀ Project Results summarized for external Evaluators
Version: 1.0

Security: Public

Date 29/06/2015

Page 41/ 58

case, the comparison of interest could be quite complex. Finally, observe that the answer to the third
question is very similar to the one given for the second question.

An interesting aspect to be considered when assessing the capability of a certification process to provide
assurance is the associated trust model (in terms of entities involved in the process and trust relations
among them). CUMULUS defines a (hierarchical) chain of trust, based on certification model signature,
involving the issuers of the certification models at any abstraction level (CM, CMT, and CMI), which, in a
sense, can be seen as the reference criteria to conduct the certification process. Such chain of trust,
assuming that the trustworthiness of the root entity can be suitably assessed, can support the end user in
assessing (a contribution to) the assurance corresponding to the overall certification process specification.

Finally, it is important to stress the fact that potentially each action performed during a certification
process could contribute to the overall assurance as perceived by an end user. At the model level
CUMULUS foresees a set of primitives to configure the actions to be performed in the certification process.
However, such configuration should be completed by providing the end user with an adequate visibility of
all the relevant results and all the relevant mechanisms put in place to guarantee the correctness of the
process execution. From this point of view it is important to notice that the high transparency of the
CUMULUS certificate, which allows to access the whole set of evidences collected during the certification
process, is an important factor to be considered when determining the capability of representing the
assurance requested by a generic end user. Such transparency does not involve only collected evidences,
but also other kind of proofs that provide additional assurance on the trustworthiness of tools and
components used in the certification process execution and the interaction among them. As a matter of
fact, the CUMULUS Framework foresees the use of agents for evidence collection that are deployed in the
cloud system and that could assess the integrity of the underlying platform by using Trusted Computing
mechanisms.

Document name: CUMULUS Evaluation Report ɀ Project Results summarized for external Evaluators
Version: 1.0

Security: Public

Date 29/06/2015

Page 42/ 58

5. CUMULUS-aware Application Engineering

CUMULUS certification framework provides strong assurance about the security aspects of cloud
services. Looking at the side of consumption of certified services, one finds the need of an engineering
ƳŜǘƘƻŘƻƭƻƎȅ ǘƘŀǘ ŜƴŀōƭŜǎ ǘƘŜ ǳǎŜ ƻŦ ǎŜǊǾƛŎŜǎΩ ŎŜǊǘƛŦƛŎŀǘŜǎ ƛƴ ŀǇǇƭƛŎŀǘƛƻƴ/system engineering processes to
make decision about the level of security assurance when consuming those services. That is, applications
consuming cloud services need a way to make a decision whether security aspects of services are sufficient
for the application needs. However, It is not enough just to look at how to enable the use of certificates to
make security assurance decision when consuming services, but the problem requires a holistic approach of
how to enable applications security engineering whŜǊŜ ǘƘŜ ŀǎǎǳǊŀƴŎŜ ƻŦ ǎŜǊǾƛŎŜΩǎ ǎŜŎǳǊƛǘȅ ŀǎǇŜŎǘǎ ŦƻǊƳǎ
part of the security solutions adopted for a given application/system.

That is exactly the goal of CUMULUS-aware engineering framework ς to provide a holistic approach to
application security engineering where domain security requirements, security solutions and certification
ǊŜǉǳƛǊŜƳŜƴǘǎ ŦƻǊ ǎŜǊǾƛŎŜ ŎƻƴǎǳƳǇǘƛƻƴ ŀǊŜ ŘŜŦƛƴŜŘ άōȅ-ŘŜǎƛƎƴέΣ ǘƘŀǘ ƛǎ ŘǳǊƛƴƎ ǎǇŜŎƛŦƛŎŀǘƛƻƴ ƻŦ ǎŜŎǳǊƛǘȅ
models and solutions for a given (application) domain. In that way, CUMULUS engineering approach
ensures that the consumption of certified services occurs only within the context of the security solutions
defined for a given application domain. Following that, the role of certification requirements is to provide a
means of expressing what certification aspects a service must comply with to be considered as a candidate
for successful realization of a security solution when system computing is externalized over that service.

The CUMULUS engineering framework provides methodology, process and tools to allow application
developers take full advantage of CUMULUS certification and strengthen the security assurance of their
applications when consuming (interacting with) cloud services. The CUMULUS engineering methodology
defines a two-dimensional engineering framework: a security knowledge representation, and an
engineering process for systems security engineering driven by security knowledge representation.

Security knowledge representation is defined by several structured models and corresponding artefacts
called Domain Security Metamodel (DSM), Service Assurance Profile (SAP), and Security Patterns. Each of
those models plays a specific and distinct role in the engineering methodology, and forms part of a
modelling framework.

Certification requirements are defined by means of SAPs. SAPs allow security experts and certification
authorities to express certification-based assurance aspects of services to facilitate service consumers in
decision making about the security assurance cloud services have to conform to. Security Patterns help
engineers in the creation of secure systems by providing a structured definition of a security solution by its
model, components and their interactions, and the realization of the solution. The security patterns
adopted in the CUMULUS engineering framework allow for intuitive and easy integration in system models.
SAPs and Security Patterns are defined independently and separately from security needs of application
domains. In contrast, a DSM provides an integrated security knowledge representation for a given
application domain specifying what, why, and how domain-specific assets are to be protected by means of
security patterns and SAPs. In other words, a DSM specifies how to apply security patterns and SAPs to
cope with system needs and security requirements of that domain.

The modelling framework of the CUMULUS engineering approach allows different actors to define
security models and artefacts of the engineering methodology with decentralised life-cycle management
and usage. The modelling framework distinguishes two types of actors: security experts and certification
authorities. Security experts bring dedicated expertise and knowledge to define security patterns of specific
security solutions for a problem, and/or an integrated security knowledge for a given system domain by
specifying DSMs. Certification authorities bring dedicated expertise on certification-specific service
assurance aspects by specifying SAPs in conformance to the certification models authorities use/adopt for
service certification. Looking from the perspective of a security expert defining a DSM for a given
application domain, SAPs (as defined by authorities) are seen as certification requirements that cloud

Document name: CUMULUS Evaluation Report ɀ Project Results summarized for external Evaluators
Version: 1.0

Security: Public

Date 29/06/2015

Page 43/ 58

services must conform to in order to provide necessary assurance to applications in that domain when
consuming those services.

The role of the engineering process is to apply the security models of the engineering methodology
(DSMs, SAPs and Security Patterns) to a given system model through user-interactive process of system
model enhancements, and to provide generic but flexible application security engineering with user-friendly
decision support allowing system designers to engineer security aspects of their systems with most tailored
ǎŜŎǳǊƛǘȅ ǎƻƭǳǘƛƻƴǎ ǘƻ ǘƘŜƛǊ ǎȅǎǘŜƳǎΩ ƴŜŜŘǎΦ

The CUMULUS engineering toolset supports the modelling framework and the engineering process by
allowing semi-automated tool-assisted application security engineering, and security models lifecycle
support (creation, edition and deletion) over a decentralized repository infrastructure.

Document name: CUMULUS Evaluation Report ɀ Project Results summarized for external Evaluators
Version: 1.0

Security: Public

Date 29/06/2015

Page 44/ 58

6. Costs of applying the CUMULUS approach

6.1. Cost of certification model specification

6.1.1. Costs of test based certification model specification

We consider the worst case scenario in which all components and elements of a certification model are
specified from scratch for each certification process (e.g., ad hoc test-based probes are specified for each
certification process and model). We define the cost C of test-based certification model specification as
composed of two main contributing factors: i) the costs introduced by CM specification (definition of XML-
based certification model) and ii) the costs required for probe implementation. We note that probe reuse
(which is supported by CUMULUS test-based certification framework in D2.4 and D3.3) can substantially
reduce the cost of test-based certification model specification in a general scenario.

On the basis of the above equation, we can foresee three cost scenarios: i) no probes are implemented,
ii) static certificates are issued, iii) dynamic certificates are issued. The first case provides lowest
specification costs (i.e., self-certification), while limiting the level of assurance provided on service
properties (i.e., no evidence supports the properties of the service). The second case provides an increased
cost, mainly due to probe specification, supporting a level of assurance comparable to existing software
certification schemes. The third one provides the highest level of assurance, supporting all advanced CMs,
at a price of a small increase in the costs of CM specification, that is, lifecycle management. Similar to the
ǇŀǇŜǊ άLƴǾŜǎǘƛƴƎ ƛƴ {ƻŦǘǿŀǊŜ ¢ŜǎǘƛƴƎΥ ¢ƘŜ /ƻǎǘ ƻŦ {ƻŦǘǿŀǊŜ vǳŀƭƛǘȅέ ŀǾŀilable at [UMIL1]cost analysis for
test-based certification can be done according to the following options (see Table XYZ): i) testing staff,
infrastructure, and tools, ii) development costs, iii) testing execution costs, iv) customer support. All these
options contribute to the calculation of the certification costs and corresponding return of investments.

Cost analysis for test-based certification

Options Parameters

Testing Staff

 Infrastructure

 Tools

Development Probe development

 XML specification

 Fix cost

Execution Cost of verification

 Fix cost

Customer/cloud support Access to customer/cloud backend

 Fix cost

Tablre XYZ. ROI analysis for certification testing option

6.1.2. Costs of monitoring based certification model specification

The process of specifying monitoring based certification models is not trivial.

Document name: CUMULUS Evaluation Report ɀ Project Results summarized for external Evaluators
Version: 1.0

Security: Public

Date 29/06/2015

Page 45/ 58

The core cost factor of it is the specification of appropriate assertions in order to express the security
property that needs to be certified for the given target of certification (TOC) in a manner that can be
monitored operationally. This is certainly a non-trivial exercise. CUMULUS has advocated an assertion
language with well-defined semantics grounded on Event Calculus for this purpose. A key characteristic of
this language is the use of the relatively simple modelling primitives of events and state conditions, which
occur and are initiated/terminated at specific time points. The simplicity of the key elementary modelling
concepts that have been advocated for this purpose simplifies the security property specification task, as it
does not require familiarity with an extensive set of conceptually concept, modelling primitives. At the
same time, however, the reliance on primitive modelling primitives makes the specification of security
properties complex in certain cases (especially in the case of aggregate processes). It has to be noted,
however, that handling such cases can become significantly easier through the use of security and SLA
monitoring patterns as the ones that have been specified in [Mahbub et al 2011; Spanoudakis et al 2007].
The cost of the security property specification process can also be reduced significantly by the
standardisation of parametric definitions of monitorable security properties.

The second core cost factors in the specification of monitoring based certification models relates to the
specification of life cycle models. This can also entail a non-trivial cost. However, the CUMULUS
infrastructure contain some generic default life cycle models that could be used in different monitoring
based certification models (see section 3.2 for an example).

6.1.3. Costs of trusted computing based certification model specification

TC-based CM specification has no specific or significant cost as it mainly depends on the existence of TC
technologies on a cloud platform. Given that, we will discuss the cost of TC-based certification in terms of
required hardware and software necessary for a cloud provider to invest to enable TC-based certification
for both the cloud infrastructure and user services hosted on the cloud infrastructure. We note that TC
certification may be enabled only for a part of a cloud infrastructure where TC services and TC-based
ŎŜǊǘƛŦƛŎŀǘƛƻƴ ŀǊŜ ƻŦŦŜǊŜŘ ǘƻ ǇǊŜƳƛǳƳ ŎǳǎǘƻƳŜǊǎΣ ŜΦƎΦ ŀƭƭ ±aǎ ǿƛǘƘ ŎǳǎǘƻƳŜǊǎΩ needs of TC may be hosted on
the part of the cloud infrastructure which is TC enabled. Similarly, a cloud provider may gradually invest
over time to enable the cloud infrastructure with TC functionality. TC-based certification requires physical
TPM presence on the physical layer of a Cloud infrastructure and TPM virtualisation on the hypervisor
layer.

Hardware. To enable part of the cloud infrastructure with TC functionality, all corresponding servers
(machines) forming part of the infrastructure must be TPM equipped, that is with a TPM chip and TPM-
enabled motherboard with corresponding firmware (including physical RTMs such as CRTM). For example,
if there are 100 servers (in a rack-style configuration) where a hypervisor software instance is running, a
TPM-enabled physical platform is required for all 100 machines so that the integrity of each hypervisor
instanŎŜ ƛǎ ƳŜŀǎǳǊŜŘ ŀƴŘ ǊŜǇƻǊǘŜŘ ƛƴ ǘƘŜ ǇƘȅǎƛŎŀƭ ¢ta όƛƴ ¢taΩǎ t/wǎύ ƻŦ ŜŀŎƘ ƳŀŎƘƛƴŜΦ Lƴ ǘƘŀǘ ŎŀǎŜΣ ŀƴ
evaluation lab will be able to request/obtain integrity measurements of any hypervisor instance and
determine whether all instances represent the same hypervisor software release, and generate a TC-based
CM for the hypervisor layer.

Generally, TPM chips are not expensive hardware6 and TPM-enabled servers do not incur over cost
compared to those without TPM chips7.

6
 Currently most TPM chips can be found in the range of 8-25 Euros.

7
 For instance, IBM BladeCenter server series, such as HS22/HS23, offer TPM integration for several years

now as part of product features. Dell PowerEdge servers, such as R815/R820, offer TPM integration as part
of product features as well.

Document name: CUMULUS Evaluation Report ɀ Project Results summarized for external Evaluators
Version: 1.0

Security: Public

Date 29/06/2015

Page 46/ 58

Software. As specified by the Trusted Computing Group, the TCG Software Stack (TSS) is one of the main
software building blocks of a Trusted Computing System. TSS is to be deployed on top of any TPM-enabled
platform where a hypervisor instance is executed. There are open source implementations of TSS8.

The hypervisor layer must provide TPM virtualisation (vTPM) to enable TC-based certification on the
layer of VMs in the cloud stack. In fact, proper TPM virtualisation implementation on the hypervisor layer is
a vital part of TC-based certification. This is the most significant part of software-related cost to be
invested by a cloud provider. At the moment only few hypervisors provide TPM virtualisation such as Xen
hypervisor9. TPM virtualisation technology has not yet reached wide adoption in the community and few
realisations are available. An implementation of TPM virtualisation should conform to TCG specifications10.
Each VM that has an associated vTPM instance must have a corresponding TPM driver and TSS installed on
the VM in order to make use of the vTPM.

There is no specific cost on the side of a CA/evaluation lab in terms of TC-specific hardware or software
necessity in order to specify a TC-based CM. The CA/evaluation lab needs access to the VM and/or
hypervisor layer to examine the ToC structure and the environment the ToC is running in. Based on that,
the CA/evaluation lab can generate the corresponding CM for the given ToC. The CA/evaluation lab has to
ensure that a TC Module (of the CUMULUS framework) is properly deployed and configured in the VM of
the ToC.

6.2. Cost of certification model execution

6.2.1. Test based certification model execution & performance evaluation

 The performance of a test-based certification model execution is strongly dependent on the executed
test cases and therefore difficult to evaluate in a general case. In fact, while the setup phase of the
certification model execution environment is almost fix and negligible, variable time is requested to
execute test cases and strongly depends on the specific scenario.

As an example, we measured the performance of the test-based certification framework in a scenario
aimed at multi-layer certification of property data leakage. The considered certification process requires to
run three test types:

a) A test using Nmap script engine to check if the service is providing information over a SSL/TSL
channel.

b) A test that checks that sensitive data are stored encrypted in a database.

c) A test checking that the cloud infrastructure (OpenStack in our scenario) is using secure internal
communications or is providing encrypted storage.

We run the above certification process 10 times in our deployment infrastructure composed of a single
node Ice House Devstack installation and a single Test Agent running all test cases. The overall average
certification time is around 55,6s. Table T1 shows some detailed results, reporting the response time
collected from the Test Agent for each test type.

Test Type => Test a) Channel (ms) Test b) test DB Test c) OpenStack Test (ms)

 15108 15902 24042

8
 Such as TrouSerS (http://trousers.sourceforge.net)

9
 http://wiki.xenproject.org/wiki/Virtual_Trusted_Platform_Module_(vTPM)

10
 http://www.trustedcomputinggroup.org/developers/virtualized_platform/specifications

Document name: CUMULUS Evaluation Report ɀ Project Results summarized for external Evaluators
Version: 1.0

Security: Public

Date 29/06/2015

Page 47/ 58

 15116 15907 24090
 15112 15842 24045
 15108 15869 24045
 15113 15908 29147
 15113 15912 24104
 15112 15892 24091
 15114 15796 24158
 15104 15887 24195
 15132 15889 24140

Average => 15113,20 15880,40 24605,70

Table T1 Test and Execution Time

We note that the described certification process considers the worst case scenario: every test case is
executed in a sequential manner with no parallelization. In a real case, however, test cases can be executed
in parallel increasing the performance. In addition, performance can be further increased by incremental
certification. We also note that test-based certification model execution introduces some monetary costs,
due to the fact that test agents may need to run in the production cloud, consuming cloud resources such
as bandwidth, storage, and CPUs. These costs again strictly depend on the executed test cases and can be
reduced by incremental certification processes.

6.2.2. Monitoring based certification model execution & performance evaluation

In order to evaluate the performance of the monitoring based certification process, we carried out an
experiment where we used the CUMULUS framework to realise the certification process for the security
functional requirement FIA_UID.1.2 for the MySQL Server. In the experiment, we used a certification model
including the assertions specified in Sect. 3.2.2 and RUBiS benchmark to produce a workload of events for
the MySQL server that we wanted to monitor [RUBiS]. We also used the MySQL AUDIT Plugin developed by
McAfee to capture logs of all queries during the operation of the server [MySQL Audit Plugin].

The basic time measure that we used in order to evaluate the performance of the certification process
was the average time for making a decision about the monitoring assertion formulas in the model, called
decision delay or d-delay. d-delay measures the difference between the time point when the latest event
that is needed in order to make a decision about the satisfaction or otherwise of a monitoring formula
occurs (tc) and the time when following the capture and processing of the event, the monitor makes a
decision on whether the formula is satisfied (tp). Given the d-delay measures for individual formulas (i.e.,

Ä Ôɀ Ô), the average delay is calculated by the following formula: Av(d) = äd/N where (i) d is the d-

delay of each monitoring rule instance, and (ii) N is the total number of monitoring rule instances for which
a decision was made.

The graph in Figure 8 shows the d values for the different events of the RUBiS benchmark that caused
monitoring rule checks in the certification model, as well as the moving average of d-delay for a window of
1000 events. As it can be seen from the figure, the average d-delay remained relatively stable throughout
the execution of the RUBiS benchmark with an average value at 384.33 milliseconds and a standard
deviation of 118.92 milliseconds.

